MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofuval Structured version   Visualization version   GIF version

Theorem cofuval 16589
Description: Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuval.b 𝐵 = (Base‘𝐶)
cofuval.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofuval.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
Assertion
Ref Expression
cofuval (𝜑 → (𝐺func 𝐹) = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)

Proof of Theorem cofuval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cofu 16567 . . 3 func = (𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
21a1i 11 . 2 (𝜑 → ∘func = (𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩))
3 simprl 809 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑔 = 𝐺)
43fveq2d 6233 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st𝑔) = (1st𝐺))
5 simprr 811 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑓 = 𝐹)
65fveq2d 6233 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st𝑓) = (1st𝐹))
74, 6coeq12d 5319 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((1st𝑔) ∘ (1st𝑓)) = ((1st𝐺) ∘ (1st𝐹)))
85fveq2d 6233 . . . . . . . 8 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑓) = (2nd𝐹))
98dmeqd 5358 . . . . . . 7 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → dom (2nd𝑓) = dom (2nd𝐹))
10 cofuval.b . . . . . . . . . 10 𝐵 = (Base‘𝐶)
11 relfunc 16569 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
12 cofuval.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
13 1st2ndbr 7261 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1411, 12, 13sylancr 696 . . . . . . . . . 10 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1510, 14funcfn2 16576 . . . . . . . . 9 (𝜑 → (2nd𝐹) Fn (𝐵 × 𝐵))
16 fndm 6028 . . . . . . . . 9 ((2nd𝐹) Fn (𝐵 × 𝐵) → dom (2nd𝐹) = (𝐵 × 𝐵))
1715, 16syl 17 . . . . . . . 8 (𝜑 → dom (2nd𝐹) = (𝐵 × 𝐵))
1817adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → dom (2nd𝐹) = (𝐵 × 𝐵))
199, 18eqtrd 2685 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → dom (2nd𝑓) = (𝐵 × 𝐵))
2019dmeqd 5358 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → dom dom (2nd𝑓) = dom (𝐵 × 𝐵))
21 dmxpid 5377 . . . . 5 dom (𝐵 × 𝐵) = 𝐵
2220, 21syl6eq 2701 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → dom dom (2nd𝑓) = 𝐵)
233fveq2d 6233 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑔) = (2nd𝐺))
246fveq1d 6231 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑥))
256fveq1d 6231 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((1st𝑓)‘𝑦) = ((1st𝐹)‘𝑦))
2623, 24, 25oveq123d 6711 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) = (((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)))
278oveqd 6707 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (𝑥(2nd𝑓)𝑦) = (𝑥(2nd𝐹)𝑦))
2826, 27coeq12d 5319 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
2922, 22, 28mpt2eq123dv 6759 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))))
307, 29opeq12d 4441 . 2 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
31 cofuval.g . . 3 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
32 elex 3243 . . 3 (𝐺 ∈ (𝐷 Func 𝐸) → 𝐺 ∈ V)
3331, 32syl 17 . 2 (𝜑𝐺 ∈ V)
34 elex 3243 . . 3 (𝐹 ∈ (𝐶 Func 𝐷) → 𝐹 ∈ V)
3512, 34syl 17 . 2 (𝜑𝐹 ∈ V)
36 opex 4962 . . 3 ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩ ∈ V
3736a1i 11 . 2 (𝜑 → ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩ ∈ V)
382, 30, 33, 35, 37ovmpt2d 6830 1 (𝜑 → (𝐺func 𝐹) = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  cop 4216   class class class wbr 4685   × cxp 5141  dom cdm 5143  ccom 5147  Rel wrel 5148   Fn wfn 5921  cfv 5926  (class class class)co 6690  cmpt2 6692  1st c1st 7208  2nd c2nd 7209  Basecbs 15904   Func cfunc 16561  func ccofu 16563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-map 7901  df-ixp 7951  df-func 16565  df-cofu 16567
This theorem is referenced by:  cofu1st  16590  cofu2nd  16592  cofuval2  16594  cofucl  16595  cofuass  16596  cofulid  16597  cofurid  16598  prf1st  16891  prf2nd  16892
  Copyright terms: Public domain W3C validator