MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofuval2 Structured version   Visualization version   GIF version

Theorem cofuval2 17151
Description: Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuval2.b 𝐵 = (Base‘𝐶)
cofuval2.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
cofuval2.x (𝜑𝐻(𝐷 Func 𝐸)𝐾)
Assertion
Ref Expression
cofuval2 (𝜑 → (⟨𝐻, 𝐾⟩ ∘func𝐹, 𝐺⟩) = ⟨(𝐻𝐹), (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))⟩)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)

Proof of Theorem cofuval2
StepHypRef Expression
1 cofuval2.b . . 3 𝐵 = (Base‘𝐶)
2 cofuval2.f . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
3 df-br 5059 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
42, 3sylib 220 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
5 cofuval2.x . . . 4 (𝜑𝐻(𝐷 Func 𝐸)𝐾)
6 df-br 5059 . . . 4 (𝐻(𝐷 Func 𝐸)𝐾 ↔ ⟨𝐻, 𝐾⟩ ∈ (𝐷 Func 𝐸))
75, 6sylib 220 . . 3 (𝜑 → ⟨𝐻, 𝐾⟩ ∈ (𝐷 Func 𝐸))
81, 4, 7cofuval 17146 . 2 (𝜑 → (⟨𝐻, 𝐾⟩ ∘func𝐹, 𝐺⟩) = ⟨((1st ‘⟨𝐻, 𝐾⟩) ∘ (1st ‘⟨𝐹, 𝐺⟩)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)(2nd ‘⟨𝐻, 𝐾⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) ∘ (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)))⟩)
9 relfunc 17126 . . . . . 6 Rel (𝐷 Func 𝐸)
10 brrelex12 5598 . . . . . 6 ((Rel (𝐷 Func 𝐸) ∧ 𝐻(𝐷 Func 𝐸)𝐾) → (𝐻 ∈ V ∧ 𝐾 ∈ V))
119, 5, 10sylancr 589 . . . . 5 (𝜑 → (𝐻 ∈ V ∧ 𝐾 ∈ V))
12 op1stg 7695 . . . . 5 ((𝐻 ∈ V ∧ 𝐾 ∈ V) → (1st ‘⟨𝐻, 𝐾⟩) = 𝐻)
1311, 12syl 17 . . . 4 (𝜑 → (1st ‘⟨𝐻, 𝐾⟩) = 𝐻)
14 relfunc 17126 . . . . . 6 Rel (𝐶 Func 𝐷)
15 brrelex12 5598 . . . . . 6 ((Rel (𝐶 Func 𝐷) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V))
1614, 2, 15sylancr 589 . . . . 5 (𝜑 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
17 op1stg 7695 . . . . 5 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1816, 17syl 17 . . . 4 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1913, 18coeq12d 5729 . . 3 (𝜑 → ((1st ‘⟨𝐻, 𝐾⟩) ∘ (1st ‘⟨𝐹, 𝐺⟩)) = (𝐻𝐹))
20 op2ndg 7696 . . . . . . . 8 ((𝐻 ∈ V ∧ 𝐾 ∈ V) → (2nd ‘⟨𝐻, 𝐾⟩) = 𝐾)
2111, 20syl 17 . . . . . . 7 (𝜑 → (2nd ‘⟨𝐻, 𝐾⟩) = 𝐾)
22213ad2ant1 1129 . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → (2nd ‘⟨𝐻, 𝐾⟩) = 𝐾)
23183ad2ant1 1129 . . . . . . 7 ((𝜑𝑥𝐵𝑦𝐵) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
2423fveq1d 6666 . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑥) = (𝐹𝑥))
2523fveq1d 6666 . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑦) = (𝐹𝑦))
2622, 24, 25oveq123d 7171 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → (((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)(2nd ‘⟨𝐻, 𝐾⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))
27 op2ndg 7696 . . . . . . . 8 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
2816, 27syl 17 . . . . . . 7 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
29283ad2ant1 1129 . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
3029oveqd 7167 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦) = (𝑥𝐺𝑦))
3126, 30coeq12d 5729 . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → ((((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)(2nd ‘⟨𝐻, 𝐾⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) ∘ (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)) = (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))
3231mpoeq3dva 7225 . . 3 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ ((((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)(2nd ‘⟨𝐻, 𝐾⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) ∘ (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦))))
3319, 32opeq12d 4804 . 2 (𝜑 → ⟨((1st ‘⟨𝐻, 𝐾⟩) ∘ (1st ‘⟨𝐹, 𝐺⟩)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st ‘⟨𝐹, 𝐺⟩)‘𝑥)(2nd ‘⟨𝐻, 𝐾⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑦)) ∘ (𝑥(2nd ‘⟨𝐹, 𝐺⟩)𝑦)))⟩ = ⟨(𝐻𝐹), (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))⟩)
348, 33eqtrd 2856 1 (𝜑 → (⟨𝐻, 𝐾⟩ ∘func𝐹, 𝐺⟩) = ⟨(𝐻𝐹), (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐾(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3494  cop 4566   class class class wbr 5058  ccom 5553  Rel wrel 5554  cfv 6349  (class class class)co 7150  cmpo 7152  1st c1st 7681  2nd c2nd 7682  Basecbs 16477   Func cfunc 17118  func ccofu 17120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-map 8402  df-ixp 8456  df-func 17122  df-cofu 17124
This theorem is referenced by:  catcisolem  17360  funcrngcsetcALT  44264
  Copyright terms: Public domain W3C validator