Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coinfliplem Structured version   Visualization version   GIF version

Theorem coinfliplem 29704
Description: Division in the extended real numbers can be used for the coin-flip example. (Contributed by Thierry Arnoux, 15-Jan-2017.)
Hypotheses
Ref Expression
coinflip.h 𝐻 ∈ V
coinflip.t 𝑇 ∈ V
coinflip.th 𝐻𝑇
coinflip.2 𝑃 = ((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2)
coinflip.3 𝑋 = {⟨𝐻, 1⟩, ⟨𝑇, 0⟩}
Assertion
Ref Expression
coinfliplem 𝑃 = ((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 /𝑒 2)

Proof of Theorem coinfliplem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coinflip.2 . 2 𝑃 = ((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2)
2 coinflip.h . . 3 𝐻 ∈ V
3 simpr 475 . . . . . 6 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ 𝒫 {𝐻, 𝑇})
4 fvres 6000 . . . . . 6 (𝑥 ∈ 𝒫 {𝐻, 𝑇} → ((# ↾ 𝒫 {𝐻, 𝑇})‘𝑥) = (#‘𝑥))
53, 4syl 17 . . . . 5 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → ((# ↾ 𝒫 {𝐻, 𝑇})‘𝑥) = (#‘𝑥))
6 prfi 7994 . . . . . . . 8 {𝐻, 𝑇} ∈ Fin
73elpwid 4021 . . . . . . . 8 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ⊆ {𝐻, 𝑇})
8 ssfi 7939 . . . . . . . 8 (({𝐻, 𝑇} ∈ Fin ∧ 𝑥 ⊆ {𝐻, 𝑇}) → 𝑥 ∈ Fin)
96, 7, 8sylancr 693 . . . . . . 7 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ Fin)
10 hashcl 12871 . . . . . . 7 (𝑥 ∈ Fin → (#‘𝑥) ∈ ℕ0)
119, 10syl 17 . . . . . 6 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (#‘𝑥) ∈ ℕ0)
1211nn0red 11105 . . . . 5 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (#‘𝑥) ∈ ℝ)
135, 12eqeltrd 2592 . . . 4 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → ((# ↾ 𝒫 {𝐻, 𝑇})‘𝑥) ∈ ℝ)
14 simpr 475 . . . . 5 ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
15 2re 10843 . . . . . 6 2 ∈ ℝ
1615a1i 11 . . . . 5 ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 2 ∈ ℝ)
17 2ne0 10866 . . . . . 6 2 ≠ 0
1817a1i 11 . . . . 5 ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 2 ≠ 0)
19 rexdiv 28790 . . . . 5 ((𝑦 ∈ ℝ ∧ 2 ∈ ℝ ∧ 2 ≠ 0) → (𝑦 /𝑒 2) = (𝑦 / 2))
2014, 16, 18, 19syl3anc 1317 . . . 4 ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → (𝑦 /𝑒 2) = (𝑦 / 2))
21 hashresfn 12852 . . . . 5 (# ↾ 𝒫 {𝐻, 𝑇}) Fn 𝒫 {𝐻, 𝑇}
2221a1i 11 . . . 4 (𝐻 ∈ V → (# ↾ 𝒫 {𝐻, 𝑇}) Fn 𝒫 {𝐻, 𝑇})
23 pwfi 8018 . . . . . 6 ({𝐻, 𝑇} ∈ Fin ↔ 𝒫 {𝐻, 𝑇} ∈ Fin)
246, 23mpbi 218 . . . . 5 𝒫 {𝐻, 𝑇} ∈ Fin
2524a1i 11 . . . 4 (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ∈ Fin)
2615a1i 11 . . . 4 (𝐻 ∈ V → 2 ∈ ℝ)
2713, 20, 22, 25, 26ofcfeqd2 29316 . . 3 (𝐻 ∈ V → ((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 /𝑒 2) = ((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2))
282, 27ax-mp 5 . 2 ((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 /𝑒 2) = ((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2)
291, 28eqtr4i 2539 1 𝑃 = ((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 /𝑒 2)
Colors of variables: wff setvar class
Syntax hints:  wa 382   = wceq 1474  wcel 1938  wne 2684  Vcvv 3077  wss 3444  𝒫 cpw 4011  {cpr 4030  cop 4034  cres 4934   Fn wfn 5684  cfv 5689  (class class class)co 6425  Fincfn 7715  cr 9688  0cc0 9689  1c1 9690   / cdiv 10431  2c2 10823  0cn0 11045  #chash 12844   /𝑒 cxdiv 28781  𝑓/𝑐cofc 29310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6721  ax-cnex 9745  ax-resscn 9746  ax-1cn 9747  ax-icn 9748  ax-addcl 9749  ax-addrcl 9750  ax-mulcl 9751  ax-mulrcl 9752  ax-mulcom 9753  ax-addass 9754  ax-mulass 9755  ax-distr 9756  ax-i2m1 9757  ax-1ne0 9758  ax-1rid 9759  ax-rnegex 9760  ax-rrecex 9761  ax-cnre 9762  ax-pre-lttri 9763  ax-pre-lttrn 9764  ax-pre-ltadd 9765  ax-pre-mulgt0 9766
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6387  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-om 6832  df-1st 6932  df-2nd 6933  df-wrecs 7167  df-recs 7229  df-rdg 7267  df-1o 7321  df-2o 7322  df-oadd 7325  df-er 7503  df-map 7620  df-en 7716  df-dom 7717  df-sdom 7718  df-fin 7719  df-card 8522  df-pnf 9829  df-mnf 9830  df-xr 9831  df-ltxr 9832  df-le 9833  df-sub 10017  df-neg 10018  df-div 10432  df-nn 10774  df-2 10832  df-n0 11046  df-z 11117  df-uz 11424  df-xneg 11684  df-xmul 11686  df-hash 12845  df-xdiv 28782  df-ofc 29311
This theorem is referenced by:  coinflipprob  29705
  Copyright terms: Public domain W3C validator