Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coinflippv Structured version   Visualization version   GIF version

Theorem coinflippv 30326
Description: The probability of heads is one-half. (Contributed by Thierry Arnoux, 15-Jan-2017.)
Hypotheses
Ref Expression
coinflip.h 𝐻 ∈ V
coinflip.t 𝑇 ∈ V
coinflip.th 𝐻𝑇
coinflip.2 𝑃 = ((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2)
coinflip.3 𝑋 = {⟨𝐻, 1⟩, ⟨𝑇, 0⟩}
Assertion
Ref Expression
coinflippv (𝑃‘{𝐻}) = (1 / 2)

Proof of Theorem coinflippv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coinflip.2 . . 3 𝑃 = ((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2)
21fveq1i 6149 . 2 (𝑃‘{𝐻}) = (((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2)‘{𝐻})
3 snsspr1 4313 . . 3 {𝐻} ⊆ {𝐻, 𝑇}
4 prex 4870 . . . . 5 {𝐻, 𝑇} ∈ V
54elpw2 4788 . . . 4 ({𝐻} ∈ 𝒫 {𝐻, 𝑇} ↔ {𝐻} ⊆ {𝐻, 𝑇})
65biimpri 218 . . 3 ({𝐻} ⊆ {𝐻, 𝑇} → {𝐻} ∈ 𝒫 {𝐻, 𝑇})
7 fveq2 6148 . . . . . 6 (𝑥 = {𝐻} → (#‘𝑥) = (#‘{𝐻}))
8 coinflip.h . . . . . . 7 𝐻 ∈ V
9 hashsng 13099 . . . . . . 7 (𝐻 ∈ V → (#‘{𝐻}) = 1)
108, 9ax-mp 5 . . . . . 6 (#‘{𝐻}) = 1
117, 10syl6eq 2671 . . . . 5 (𝑥 = {𝐻} → (#‘𝑥) = 1)
1211oveq1d 6619 . . . 4 (𝑥 = {𝐻} → ((#‘𝑥) / 2) = (1 / 2))
134pwex 4808 . . . . . . 7 𝒫 {𝐻, 𝑇} ∈ V
1413a1i 11 . . . . . 6 (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ∈ V)
15 2nn0 11253 . . . . . . 7 2 ∈ ℕ0
1615a1i 11 . . . . . 6 (𝐻 ∈ V → 2 ∈ ℕ0)
17 prfi 8179 . . . . . . . . 9 {𝐻, 𝑇} ∈ Fin
18 elpwi 4140 . . . . . . . . 9 (𝑥 ∈ 𝒫 {𝐻, 𝑇} → 𝑥 ⊆ {𝐻, 𝑇})
19 ssfi 8124 . . . . . . . . 9 (({𝐻, 𝑇} ∈ Fin ∧ 𝑥 ⊆ {𝐻, 𝑇}) → 𝑥 ∈ Fin)
2017, 18, 19sylancr 694 . . . . . . . 8 (𝑥 ∈ 𝒫 {𝐻, 𝑇} → 𝑥 ∈ Fin)
2120adantl 482 . . . . . . 7 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ Fin)
22 hashcl 13087 . . . . . . 7 (𝑥 ∈ Fin → (#‘𝑥) ∈ ℕ0)
2321, 22syl 17 . . . . . 6 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (#‘𝑥) ∈ ℕ0)
24 hashf 13065 . . . . . . . 8 #:V⟶(ℕ0 ∪ {+∞})
2524a1i 11 . . . . . . 7 (𝐻 ∈ V → #:V⟶(ℕ0 ∪ {+∞}))
26 ssv 3604 . . . . . . . 8 𝒫 {𝐻, 𝑇} ⊆ V
2726a1i 11 . . . . . . 7 (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ⊆ V)
2825, 27feqresmpt 6207 . . . . . 6 (𝐻 ∈ V → (# ↾ 𝒫 {𝐻, 𝑇}) = (𝑥 ∈ 𝒫 {𝐻, 𝑇} ↦ (#‘𝑥)))
2914, 16, 23, 28ofcfval2 29947 . . . . 5 (𝐻 ∈ V → ((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2) = (𝑥 ∈ 𝒫 {𝐻, 𝑇} ↦ ((#‘𝑥) / 2)))
308, 29ax-mp 5 . . . 4 ((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2) = (𝑥 ∈ 𝒫 {𝐻, 𝑇} ↦ ((#‘𝑥) / 2))
31 ovex 6632 . . . 4 (1 / 2) ∈ V
3212, 30, 31fvmpt 6239 . . 3 ({𝐻} ∈ 𝒫 {𝐻, 𝑇} → (((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2)‘{𝐻}) = (1 / 2))
333, 6, 32mp2b 10 . 2 (((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2)‘{𝐻}) = (1 / 2)
342, 33eqtri 2643 1 (𝑃‘{𝐻}) = (1 / 2)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1480  wcel 1987  wne 2790  Vcvv 3186  cun 3553  wss 3555  𝒫 cpw 4130  {csn 4148  {cpr 4150  cop 4154  cmpt 4673  cres 5076  wf 5843  cfv 5847  (class class class)co 6604  Fincfn 7899  0cc0 9880  1c1 9881  +∞cpnf 10015   / cdiv 10628  2c2 11014  0cn0 11236  #chash 13057  𝑓/𝑐cofc 29938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-hash 13058  df-ofc 29939
This theorem is referenced by:  coinflippvt  30327
  Copyright terms: Public domain W3C validator