Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colinbtwnle Structured version   Visualization version   GIF version

Theorem colinbtwnle 32200
Description: Given three colinear points 𝐴, 𝐵, and 𝐶, 𝐵 falls in the middle iff the two segments to 𝐵 are no longer than 𝐴𝐶. Theorem 5.12 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colinbtwnle ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩))))

Proof of Theorem colinbtwnle
StepHypRef Expression
1 btwnsegle 32199 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ → ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩))
2 3anrev 1047 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ↔ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)))
3 btwnsegle 32199 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ → ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩))
42, 3sylan2b 492 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ → ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩))
5 3ancoma 1043 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ↔ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
6 btwncom 32096 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
75, 6sylan2b 492 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
8 simpl 473 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
9 simpr2 1066 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
10 simpr3 1067 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
118, 9, 10cgrrflx2d 32066 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ⟨𝐵, 𝐶⟩Cgr⟨𝐶, 𝐵⟩)
12 simpr1 1065 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
138, 12, 10cgrrflx2d 32066 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ⟨𝐴, 𝐶⟩Cgr⟨𝐶, 𝐴⟩)
14 seglecgr12 32193 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → ((⟨𝐵, 𝐶⟩Cgr⟨𝐶, 𝐵⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐶, 𝐴⟩) → (⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩ ↔ ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩)))
158, 9, 10, 12, 10, 10, 9, 10, 12, 14syl333anc 1356 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((⟨𝐵, 𝐶⟩Cgr⟨𝐶, 𝐵⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐶, 𝐴⟩) → (⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩ ↔ ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩)))
1611, 13, 15mp2and 714 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩ ↔ ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩))
174, 7, 163imtr4d 283 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ → ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩))
181, 17jcad 555 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ → (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)))
1918adantr 481 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Colinear ⟨𝐵, 𝐶⟩) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ → (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)))
20 brcolinear 32141 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ ↔ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)))
21 simprl 793 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → 𝐴 Btwn ⟨𝐵, 𝐶⟩)
228, 12, 9, 10, 21btwncomand 32097 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → 𝐴 Btwn ⟨𝐶, 𝐵⟩)
2316biimpa 501 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩)
2423adantrl 751 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩)
25 btwncom 32096 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝐴 Btwn ⟨𝐶, 𝐵⟩))
26 3anrot 1041 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ↔ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
27 btwnsegle 32199 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐶, 𝐵⟩ → ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩))
2826, 27sylan2br 493 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐶, 𝐵⟩ → ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩))
2925, 28sylbid 230 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ → ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩))
3029imp 445 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Btwn ⟨𝐵, 𝐶⟩) → ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩)
3130adantrr 752 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩)
32 segleantisym 32197 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → ((⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩ ∧ ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩) → ⟨𝐶, 𝐵⟩Cgr⟨𝐶, 𝐴⟩))
338, 10, 9, 10, 12, 32syl122anc 1333 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩ ∧ ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩) → ⟨𝐶, 𝐵⟩Cgr⟨𝐶, 𝐴⟩))
3433adantr 481 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → ((⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩ ∧ ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩) → ⟨𝐶, 𝐵⟩Cgr⟨𝐶, 𝐴⟩))
3524, 31, 34mp2and 714 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐶, 𝐵⟩Cgr⟨𝐶, 𝐴⟩)
368, 10, 9, 12, 22, 35endofsegidand 32168 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → 𝐵 = 𝐴)
37 btwntriv1 32098 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐴 Btwn ⟨𝐴, 𝐶⟩)
38373adant3r2 1273 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐴 Btwn ⟨𝐴, 𝐶⟩)
39 breq1 4647 . . . . . . . . . . . 12 (𝐵 = 𝐴 → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐴 Btwn ⟨𝐴, 𝐶⟩))
4038, 39syl5ibrcom 237 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 = 𝐴𝐵 Btwn ⟨𝐴, 𝐶⟩))
4140adantr 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → (𝐵 = 𝐴𝐵 Btwn ⟨𝐴, 𝐶⟩))
4236, 41mpd 15 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
4342expr 642 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Btwn ⟨𝐵, 𝐶⟩) → (⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩ → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
4443adantld 483 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Btwn ⟨𝐵, 𝐶⟩) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
4544ex 450 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)))
467biimprd 238 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
4746a1dd 50 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)))
48 simprl 793 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → 𝐶 Btwn ⟨𝐴, 𝐵⟩)
49 simprr 795 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)
50 3ancomb 1045 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ↔ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
51 btwnsegle 32199 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ → ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩))
5250, 51sylan2b 492 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ → ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩))
5352imp 445 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐶 Btwn ⟨𝐴, 𝐵⟩) → ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩)
5453adantrr 752 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩)
55 segleantisym 32197 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩) → ⟨𝐴, 𝐵⟩Cgr⟨𝐴, 𝐶⟩))
568, 12, 9, 12, 10, 55syl122anc 1333 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩) → ⟨𝐴, 𝐵⟩Cgr⟨𝐴, 𝐶⟩))
5756adantr 481 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩) → ⟨𝐴, 𝐵⟩Cgr⟨𝐴, 𝐶⟩))
5849, 54, 57mp2and 714 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐴, 𝐶⟩)
598, 12, 9, 10, 48, 58endofsegidand 32168 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → 𝐵 = 𝐶)
60 btwntriv2 32094 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐶 Btwn ⟨𝐴, 𝐶⟩)
61603adant3r2 1273 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐶 Btwn ⟨𝐴, 𝐶⟩)
62 breq1 4647 . . . . . . . . . . . 12 (𝐵 = 𝐶 → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐶 Btwn ⟨𝐴, 𝐶⟩))
6361, 62syl5ibrcom 237 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 = 𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩))
6463adantr 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → (𝐵 = 𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩))
6559, 64mpd 15 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
6665expr 642 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐶 Btwn ⟨𝐴, 𝐵⟩) → (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
6766adantrd 484 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐶 Btwn ⟨𝐴, 𝐵⟩) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
6867ex 450 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)))
6945, 47, 683jaod 1390 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)))
7020, 69sylbid 230 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)))
7170imp 445 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Colinear ⟨𝐵, 𝐶⟩) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
7219, 71impbid 202 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Colinear ⟨𝐵, 𝐶⟩) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)))
7372ex 450 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3o 1035  w3a 1036   = wceq 1481  wcel 1988  cop 4174   class class class wbr 4644  cfv 5876  cn 11005  𝔼cee 25749   Btwn cbtwn 25750  Cgrccgr 25751   Colinear ccolin 32119   Seg csegle 32188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-oi 8400  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-z 11363  df-uz 11673  df-rp 11818  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-sum 14398  df-ee 25752  df-btwn 25753  df-cgr 25754  df-ofs 32065  df-colinear 32121  df-ifs 32122  df-cgr3 32123  df-segle 32189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator