Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colineardim1 Structured version   Visualization version   GIF version

Theorem colineardim1 31802
Description: If 𝐴 is colinear with 𝐵 and 𝐶, then 𝐴 is in the same space as 𝐵. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colineardim1 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ → 𝐴 ∈ (𝔼‘𝑁)))

Proof of Theorem colineardim1
Dummy variables 𝑎 𝑏 𝑐 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-colinear 31780 . . 3 Colinear = {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}
21breqi 4624 . 2 (𝐴 Colinear ⟨𝐵, 𝐶⟩ ↔ 𝐴{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}⟨𝐵, 𝐶⟩)
3 simpr1 1065 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → 𝐴𝑉)
4 opex 4898 . . . 4 𝐵, 𝐶⟩ ∈ V
5 brcnvg 5268 . . . 4 ((𝐴𝑉 ∧ ⟨𝐵, 𝐶⟩ ∈ V) → (𝐴{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}𝐴))
63, 4, 5sylancl 693 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝐴{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}𝐴))
7 df-br 4619 . . . 4 (⟨𝐵, 𝐶⟩{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}𝐴 ↔ ⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))})
8 eleq1 2692 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑏 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑛)))
983anbi2d 1401 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ↔ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛))))
10 opeq1 4375 . . . . . . . . . . . 12 (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩)
1110breq2d 4630 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑎 Btwn ⟨𝑏, 𝑐⟩ ↔ 𝑎 Btwn ⟨𝐵, 𝑐⟩))
12 breq1 4621 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑏 Btwn ⟨𝑐, 𝑎⟩ ↔ 𝐵 Btwn ⟨𝑐, 𝑎⟩))
13 opeq2 4376 . . . . . . . . . . . 12 (𝑏 = 𝐵 → ⟨𝑎, 𝑏⟩ = ⟨𝑎, 𝐵⟩)
1413breq2d 4630 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝑐 Btwn ⟨𝑎, 𝑏⟩ ↔ 𝑐 Btwn ⟨𝑎, 𝐵⟩))
1511, 12, 143orbi123d 1395 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩) ↔ (𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩)))
169, 15anbi12d 746 . . . . . . . . 9 (𝑏 = 𝐵 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) ↔ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩))))
1716rexbidv 3050 . . . . . . . 8 (𝑏 = 𝐵 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) ↔ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩))))
18 eleq1 2692 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝑐 ∈ (𝔼‘𝑛) ↔ 𝐶 ∈ (𝔼‘𝑛)))
19183anbi3d 1402 . . . . . . . . . 10 (𝑐 = 𝐶 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ↔ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛))))
20 opeq2 4376 . . . . . . . . . . . 12 (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩)
2120breq2d 4630 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝑎 Btwn ⟨𝐵, 𝑐⟩ ↔ 𝑎 Btwn ⟨𝐵, 𝐶⟩))
22 opeq1 4375 . . . . . . . . . . . 12 (𝑐 = 𝐶 → ⟨𝑐, 𝑎⟩ = ⟨𝐶, 𝑎⟩)
2322breq2d 4630 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝐵 Btwn ⟨𝑐, 𝑎⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝑎⟩))
24 breq1 4621 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝑐 Btwn ⟨𝑎, 𝐵⟩ ↔ 𝐶 Btwn ⟨𝑎, 𝐵⟩))
2521, 23, 243orbi123d 1395 . . . . . . . . . 10 (𝑐 = 𝐶 → ((𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩) ↔ (𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩)))
2619, 25anbi12d 746 . . . . . . . . 9 (𝑐 = 𝐶 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩)) ↔ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩))))
2726rexbidv 3050 . . . . . . . 8 (𝑐 = 𝐶 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝑐⟩ ∨ 𝐵 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝐵⟩)) ↔ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩))))
28 eleq1 2692 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
29283anbi1d 1400 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛))))
30 breq1 4621 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝐴 Btwn ⟨𝐵, 𝐶⟩))
31 opeq2 4376 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ⟨𝐶, 𝑎⟩ = ⟨𝐶, 𝐴⟩)
3231breq2d 4630 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝐵 Btwn ⟨𝐶, 𝑎⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
33 opeq1 4375 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ⟨𝑎, 𝐵⟩ = ⟨𝐴, 𝐵⟩)
3433breq2d 4630 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝐶 Btwn ⟨𝑎, 𝐵⟩ ↔ 𝐶 Btwn ⟨𝐴, 𝐵⟩))
3530, 32, 343orbi123d 1395 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩) ↔ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)))
3629, 35anbi12d 746 . . . . . . . . 9 (𝑎 = 𝐴 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩)) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
3736rexbidv 3050 . . . . . . . 8 (𝑎 = 𝐴 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝑎⟩ ∨ 𝐶 Btwn ⟨𝑎, 𝐵⟩)) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
3817, 27, 37eloprabg 6702 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊𝐴𝑉) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
39383comr 1270 . . . . . 6 ((𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
4039adantl 482 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))))
41 simpl 473 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)) → (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)))
42 simp2 1060 . . . . . . . . . 10 ((𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊) → 𝐵 ∈ (𝔼‘𝑁))
4342anim2i 592 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)))
44 3simpa 1056 . . . . . . . . . 10 ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) → (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)))
4544anim2i 592 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛))) → (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛))))
46 axdimuniq 25688 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑛))) → 𝑁 = 𝑛)
4746adantrrl 759 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)))) → 𝑁 = 𝑛)
48 simprrl 803 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)))) → 𝐴 ∈ (𝔼‘𝑛))
49 fveq2 6150 . . . . . . . . . . . 12 (𝑁 = 𝑛 → (𝔼‘𝑁) = (𝔼‘𝑛))
5049eleq2d 2689 . . . . . . . . . . 11 (𝑁 = 𝑛 → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴 ∈ (𝔼‘𝑛)))
5148, 50syl5ibrcom 237 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)))) → (𝑁 = 𝑛𝐴 ∈ (𝔼‘𝑁)))
5247, 51mpd 15 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)))) → 𝐴 ∈ (𝔼‘𝑁))
5343, 45, 52syl2an 494 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) ∧ (𝑛 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)))) → 𝐴 ∈ (𝔼‘𝑁))
5453exp32 630 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝑛 ∈ ℕ → ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) → 𝐴 ∈ (𝔼‘𝑁))))
5541, 54syl7 74 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝑛 ∈ ℕ → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)) → 𝐴 ∈ (𝔼‘𝑁))))
5655rexlimdv 3028 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐶 ∈ (𝔼‘𝑛)) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)) → 𝐴 ∈ (𝔼‘𝑁)))
5740, 56sylbid 230 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (⟨⟨𝐵, 𝐶⟩, 𝐴⟩ ∈ {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} → 𝐴 ∈ (𝔼‘𝑁)))
587, 57syl5bi 232 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (⟨𝐵, 𝐶⟩{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}𝐴𝐴 ∈ (𝔼‘𝑁)))
596, 58sylbid 230 . 2 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝐴{⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}⟨𝐵, 𝐶⟩ → 𝐴 ∈ (𝔼‘𝑁)))
602, 59syl5bi 232 1 ((𝑁 ∈ ℕ ∧ (𝐴𝑉𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶𝑊)) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ → 𝐴 ∈ (𝔼‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3o 1035  w3a 1036   = wceq 1480  wcel 1992  wrex 2913  Vcvv 3191  cop 4159   class class class wbr 4618  ccnv 5078  cfv 5850  {coprab 6606  cn 10965  𝔼cee 25663   Btwn cbtwn 25664   Colinear ccolin 31778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-z 11323  df-uz 11632  df-fz 12266  df-ee 25666  df-colinear 31780
This theorem is referenced by:  liness  31886
  Copyright terms: Public domain W3C validator