Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colinearex Structured version   Visualization version   GIF version

Theorem colinearex 33516
Description: The colinear predicate exists. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colinearex Colinear ∈ V

Proof of Theorem colinearex
Dummy variables 𝑎 𝑏 𝑐 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-colinear 33495 . 2 Colinear = {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}
2 nnex 11638 . . . . 5 ℕ ∈ V
3 fvex 6677 . . . . . . 7 (𝔼‘𝑛) ∈ V
43, 3xpex 7470 . . . . . 6 ((𝔼‘𝑛) × (𝔼‘𝑛)) ∈ V
54, 3xpex 7470 . . . . 5 (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)) ∈ V
62, 5iunex 7663 . . . 4 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)) ∈ V
7 df-oprab 7154 . . . . 5 {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} = {𝑥 ∣ ∃𝑏𝑐𝑎(𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)))}
8 opelxpi 5586 . . . . . . . . . . . . . 14 ((𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) → ⟨𝑏, 𝑐⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))
983adant1 1126 . . . . . . . . . . . . 13 ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) → ⟨𝑏, 𝑐⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))
10 simp1 1132 . . . . . . . . . . . . 13 ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) → 𝑎 ∈ (𝔼‘𝑛))
11 opelxpi 5586 . . . . . . . . . . . . 13 ((⟨𝑏, 𝑐⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑎 ∈ (𝔼‘𝑛)) → ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
129, 10, 11syl2anc 586 . . . . . . . . . . . 12 ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) → ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
1312adantr 483 . . . . . . . . . . 11 (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) → ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
1413reximi 3243 . . . . . . . . . 10 (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) → ∃𝑛 ∈ ℕ ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
15 eliun 4915 . . . . . . . . . 10 (⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)) ↔ ∃𝑛 ∈ ℕ ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
1614, 15sylibr 236 . . . . . . . . 9 (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)) → ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
17 eleq1 2900 . . . . . . . . . 10 (𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ → (𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)) ↔ ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛))))
1817biimpar 480 . . . . . . . . 9 ((𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∈ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛))) → 𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
1916, 18sylan2 594 . . . . . . . 8 ((𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))) → 𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
2019exlimiv 1927 . . . . . . 7 (∃𝑎(𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))) → 𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
2120exlimivv 1929 . . . . . 6 (∃𝑏𝑐𝑎(𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))) → 𝑥 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛)))
2221abssi 4045 . . . . 5 {𝑥 ∣ ∃𝑏𝑐𝑎(𝑥 = ⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∧ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩)))} ⊆ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛))
237, 22eqsstri 4000 . . . 4 {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ⊆ 𝑛 ∈ ℕ (((𝔼‘𝑛) × (𝔼‘𝑛)) × (𝔼‘𝑛))
246, 23ssexi 5218 . . 3 {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ∈ V
2524cnvex 7624 . 2 {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))} ∈ V
261, 25eqeltri 2909 1 Colinear ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 398  w3o 1082  w3a 1083   = wceq 1533  wex 1776  wcel 2110  {cab 2799  wrex 3139  Vcvv 3494  cop 4566   ciun 4911   class class class wbr 5058   × cxp 5547  ccnv 5548  cfv 6349  {coprab 7151  cn 11632  𝔼cee 26668   Btwn cbtwn 26669   Colinear ccolin 33493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-1cn 10589  ax-addcl 10591
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-nn 11633  df-colinear 33495
This theorem is referenced by:  fvline  33600
  Copyright terms: Public domain W3C validator