MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colline Structured version   Visualization version   GIF version

Theorem colline 26429
Description: Three points are colinear iff there is a line through all three of them. Theorem 6.23 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 28-May-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
colline.1 (𝜑𝑋𝑃)
colline.2 (𝜑𝑌𝑃)
colline.3 (𝜑𝑍𝑃)
colline.4 (𝜑 → 2 ≤ (♯‘𝑃))
Assertion
Ref Expression
colline (𝜑 → ((𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍) ↔ ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎)))
Distinct variable groups:   𝐿,𝑎   𝑋,𝑎   𝑌,𝑎   𝑍,𝑎   𝜑,𝑎
Allowed substitution hints:   𝑃(𝑎)   𝐺(𝑎)   𝐼(𝑎)

Proof of Theorem colline
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tglineintmo.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54ad4antr 730 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝐺 ∈ TarskiG)
6 colline.1 . . . . . . . . 9 (𝜑𝑋𝑃)
76ad4antr 730 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑋𝑃)
8 simplr 767 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑥𝑃)
9 simpr 487 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑋𝑥)
101, 2, 3, 5, 7, 8, 9tgelrnln 26410 . . . . . . 7 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → (𝑋𝐿𝑥) ∈ ran 𝐿)
111, 2, 3, 5, 7, 8, 9tglinerflx1 26413 . . . . . . 7 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑋 ∈ (𝑋𝐿𝑥))
12 simp-4r 782 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑌 = 𝑍)
13 simpllr 774 . . . . . . . . 9 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑋 = 𝑍)
1413, 11eqeltrrd 2914 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑍 ∈ (𝑋𝐿𝑥))
1512, 14eqeltrd 2913 . . . . . . 7 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑌 ∈ (𝑋𝐿𝑥))
16 eleq2 2901 . . . . . . . . 9 (𝑎 = (𝑋𝐿𝑥) → (𝑋𝑎𝑋 ∈ (𝑋𝐿𝑥)))
17 eleq2 2901 . . . . . . . . 9 (𝑎 = (𝑋𝐿𝑥) → (𝑌𝑎𝑌 ∈ (𝑋𝐿𝑥)))
18 eleq2 2901 . . . . . . . . 9 (𝑎 = (𝑋𝐿𝑥) → (𝑍𝑎𝑍 ∈ (𝑋𝐿𝑥)))
1916, 17, 183anbi123d 1432 . . . . . . . 8 (𝑎 = (𝑋𝐿𝑥) → ((𝑋𝑎𝑌𝑎𝑍𝑎) ↔ (𝑋 ∈ (𝑋𝐿𝑥) ∧ 𝑌 ∈ (𝑋𝐿𝑥) ∧ 𝑍 ∈ (𝑋𝐿𝑥))))
2019rspcev 3622 . . . . . . 7 (((𝑋𝐿𝑥) ∈ ran 𝐿 ∧ (𝑋 ∈ (𝑋𝐿𝑥) ∧ 𝑌 ∈ (𝑋𝐿𝑥) ∧ 𝑍 ∈ (𝑋𝐿𝑥))) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
2110, 11, 15, 14, 20syl13anc 1368 . . . . . 6 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
22 eqid 2821 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
23 colline.4 . . . . . . . 8 (𝜑 → 2 ≤ (♯‘𝑃))
241, 22, 2, 4, 23, 6tglowdim1i 26281 . . . . . . 7 (𝜑 → ∃𝑥𝑃 𝑋𝑥)
2524ad2antrr 724 . . . . . 6 (((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) → ∃𝑥𝑃 𝑋𝑥)
2621, 25r19.29a 3289 . . . . 5 (((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
274ad2antrr 724 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝐺 ∈ TarskiG)
286ad2antrr 724 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑋𝑃)
29 colline.3 . . . . . . . 8 (𝜑𝑍𝑃)
3029ad2antrr 724 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑍𝑃)
31 simpr 487 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑋𝑍)
321, 2, 3, 27, 28, 30, 31tgelrnln 26410 . . . . . 6 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → (𝑋𝐿𝑍) ∈ ran 𝐿)
331, 2, 3, 27, 28, 30, 31tglinerflx1 26413 . . . . . 6 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑋 ∈ (𝑋𝐿𝑍))
34 simplr 767 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑌 = 𝑍)
351, 2, 3, 27, 28, 30, 31tglinerflx2 26414 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑍 ∈ (𝑋𝐿𝑍))
3634, 35eqeltrd 2913 . . . . . 6 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑌 ∈ (𝑋𝐿𝑍))
37 eleq2 2901 . . . . . . . 8 (𝑎 = (𝑋𝐿𝑍) → (𝑋𝑎𝑋 ∈ (𝑋𝐿𝑍)))
38 eleq2 2901 . . . . . . . 8 (𝑎 = (𝑋𝐿𝑍) → (𝑌𝑎𝑌 ∈ (𝑋𝐿𝑍)))
39 eleq2 2901 . . . . . . . 8 (𝑎 = (𝑋𝐿𝑍) → (𝑍𝑎𝑍 ∈ (𝑋𝐿𝑍)))
4037, 38, 393anbi123d 1432 . . . . . . 7 (𝑎 = (𝑋𝐿𝑍) → ((𝑋𝑎𝑌𝑎𝑍𝑎) ↔ (𝑋 ∈ (𝑋𝐿𝑍) ∧ 𝑌 ∈ (𝑋𝐿𝑍) ∧ 𝑍 ∈ (𝑋𝐿𝑍))))
4140rspcev 3622 . . . . . 6 (((𝑋𝐿𝑍) ∈ ran 𝐿 ∧ (𝑋 ∈ (𝑋𝐿𝑍) ∧ 𝑌 ∈ (𝑋𝐿𝑍) ∧ 𝑍 ∈ (𝑋𝐿𝑍))) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
4232, 33, 36, 35, 41syl13anc 1368 . . . . 5 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
4326, 42pm2.61dane 3104 . . . 4 ((𝜑𝑌 = 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
4443adantlr 713 . . 3 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 = 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
45 simpll 765 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → 𝜑)
46 simpr 487 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → 𝑌𝑍)
4746neneqd 3021 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → ¬ 𝑌 = 𝑍)
48 simplr 767 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
49 orel2 887 . . . . . 6 𝑌 = 𝑍 → ((𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍) → 𝑋 ∈ (𝑌𝐿𝑍)))
5047, 48, 49sylc 65 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → 𝑋 ∈ (𝑌𝐿𝑍))
514ad2antrr 724 . . . . . 6 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝐺 ∈ TarskiG)
52 colline.2 . . . . . . 7 (𝜑𝑌𝑃)
5352ad2antrr 724 . . . . . 6 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝑌𝑃)
5429ad2antrr 724 . . . . . 6 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝑍𝑃)
55 simpr 487 . . . . . 6 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝑌𝑍)
561, 2, 3, 51, 53, 54, 55tgelrnln 26410 . . . . 5 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → (𝑌𝐿𝑍) ∈ ran 𝐿)
5745, 50, 46, 56syl21anc 835 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → (𝑌𝐿𝑍) ∈ ran 𝐿)
581, 2, 3, 51, 53, 54, 55tglinerflx1 26413 . . . . 5 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝑌 ∈ (𝑌𝐿𝑍))
5945, 50, 46, 58syl21anc 835 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → 𝑌 ∈ (𝑌𝐿𝑍))
601, 2, 3, 51, 53, 54, 55tglinerflx2 26414 . . . . 5 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝑍 ∈ (𝑌𝐿𝑍))
6145, 50, 46, 60syl21anc 835 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → 𝑍 ∈ (𝑌𝐿𝑍))
62 eleq2 2901 . . . . . 6 (𝑎 = (𝑌𝐿𝑍) → (𝑋𝑎𝑋 ∈ (𝑌𝐿𝑍)))
63 eleq2 2901 . . . . . 6 (𝑎 = (𝑌𝐿𝑍) → (𝑌𝑎𝑌 ∈ (𝑌𝐿𝑍)))
64 eleq2 2901 . . . . . 6 (𝑎 = (𝑌𝐿𝑍) → (𝑍𝑎𝑍 ∈ (𝑌𝐿𝑍)))
6562, 63, 643anbi123d 1432 . . . . 5 (𝑎 = (𝑌𝐿𝑍) → ((𝑋𝑎𝑌𝑎𝑍𝑎) ↔ (𝑋 ∈ (𝑌𝐿𝑍) ∧ 𝑌 ∈ (𝑌𝐿𝑍) ∧ 𝑍 ∈ (𝑌𝐿𝑍))))
6665rspcev 3622 . . . 4 (((𝑌𝐿𝑍) ∈ ran 𝐿 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∧ 𝑌 ∈ (𝑌𝐿𝑍) ∧ 𝑍 ∈ (𝑌𝐿𝑍))) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
6757, 50, 59, 61, 66syl13anc 1368 . . 3 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
6844, 67pm2.61dane 3104 . 2 ((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
69 df-ne 3017 . . . . . 6 (𝑌𝑍 ↔ ¬ 𝑌 = 𝑍)
70 simplr1 1211 . . . . . . . 8 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑋𝑎)
714ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝐺 ∈ TarskiG)
7252ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑌𝑃)
7329ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑍𝑃)
74 simpr 487 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑌𝑍)
75 simpllr 774 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑎 ∈ ran 𝐿)
76 simplr2 1212 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑌𝑎)
77 simplr3 1213 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑍𝑎)
781, 2, 3, 71, 72, 73, 74, 74, 75, 76, 77tglinethru 26416 . . . . . . . 8 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑎 = (𝑌𝐿𝑍))
7970, 78eleqtrd 2915 . . . . . . 7 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑋 ∈ (𝑌𝐿𝑍))
8079ex 415 . . . . . 6 (((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) → (𝑌𝑍𝑋 ∈ (𝑌𝐿𝑍)))
8169, 80syl5bir 245 . . . . 5 (((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) → (¬ 𝑌 = 𝑍𝑋 ∈ (𝑌𝐿𝑍)))
8281orrd 859 . . . 4 (((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) → (𝑌 = 𝑍𝑋 ∈ (𝑌𝐿𝑍)))
8382orcomd 867 . . 3 (((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
8483r19.29an 3288 . 2 ((𝜑 ∧ ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎)) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
8568, 84impbida 799 1 (𝜑 → ((𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍) ↔ ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wrex 3139   class class class wbr 5058  ran crn 5550  cfv 6349  (class class class)co 7150  cle 10670  2c2 11686  chash 13684  Basecbs 16477  distcds 16568  TarskiGcstrkg 26210  Itvcitv 26216  LineGclng 26217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-concat 13917  df-s1 13944  df-s2 14204  df-s3 14205  df-trkgc 26228  df-trkgb 26229  df-trkgcb 26230  df-trkg 26233  df-cgrg 26291
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator