MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coltr Structured version   Visualization version   GIF version

Theorem coltr 26360
Description: A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
coltr.a (𝜑𝐴𝑃)
coltr.b (𝜑𝐵𝑃)
coltr.c (𝜑𝐶𝑃)
coltr.d (𝜑𝐷𝑃)
coltr.1 (𝜑𝐴 ∈ (𝐵𝐿𝐶))
coltr.2 (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
Assertion
Ref Expression
coltr (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))

Proof of Theorem coltr
StepHypRef Expression
1 tglineintmo.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54adantr 481 . . . . . . . 8 ((𝜑𝐶𝐷) → 𝐺 ∈ TarskiG)
6 coltr.c . . . . . . . . 9 (𝜑𝐶𝑃)
76adantr 481 . . . . . . . 8 ((𝜑𝐶𝐷) → 𝐶𝑃)
8 coltr.d . . . . . . . . 9 (𝜑𝐷𝑃)
98adantr 481 . . . . . . . 8 ((𝜑𝐶𝐷) → 𝐷𝑃)
10 simpr 485 . . . . . . . 8 ((𝜑𝐶𝐷) → 𝐶𝐷)
111, 2, 3, 5, 7, 9, 10tglinerflx1 26346 . . . . . . 7 ((𝜑𝐶𝐷) → 𝐶 ∈ (𝐶𝐿𝐷))
1211ex 413 . . . . . 6 (𝜑 → (𝐶𝐷𝐶 ∈ (𝐶𝐿𝐷)))
1312necon1bd 3031 . . . . 5 (𝜑 → (¬ 𝐶 ∈ (𝐶𝐿𝐷) → 𝐶 = 𝐷))
1413orrd 857 . . . 4 (𝜑 → (𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
1514adantr 481 . . 3 ((𝜑𝐴 = 𝐶) → (𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
16 simplr 765 . . . . . 6 (((𝜑𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐴 = 𝐶)
17 simpr 485 . . . . . 6 (((𝜑𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐶 ∈ (𝐶𝐿𝐷))
1816, 17eqeltrd 2910 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐴 ∈ (𝐶𝐿𝐷))
1918ex 413 . . . 4 ((𝜑𝐴 = 𝐶) → (𝐶 ∈ (𝐶𝐿𝐷) → 𝐴 ∈ (𝐶𝐿𝐷)))
2019orim1d 959 . . 3 ((𝜑𝐴 = 𝐶) → ((𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)))
2115, 20mpd 15 . 2 ((𝜑𝐴 = 𝐶) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
22 coltr.2 . . . 4 (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
2322ad2antrr 722 . . 3 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
244ad2antrr 722 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐺 ∈ TarskiG)
25 coltr.a . . . . 5 (𝜑𝐴𝑃)
2625ad2antrr 722 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐴𝑃)
276ad2antrr 722 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐶𝑃)
288ad2antrr 722 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐷𝑃)
29 coltr.b . . . . 5 (𝜑𝐵𝑃)
3029ad2antrr 722 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵𝑃)
31 simpr 485 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
324adantr 481 . . . . . 6 ((𝜑𝐴𝐶) → 𝐺 ∈ TarskiG)
3325adantr 481 . . . . . 6 ((𝜑𝐴𝐶) → 𝐴𝑃)
346adantr 481 . . . . . 6 ((𝜑𝐴𝐶) → 𝐶𝑃)
3529adantr 481 . . . . . 6 ((𝜑𝐴𝐶) → 𝐵𝑃)
36 simpr 485 . . . . . 6 ((𝜑𝐴𝐶) → 𝐴𝐶)
37 coltr.1 . . . . . . . . . 10 (𝜑𝐴 ∈ (𝐵𝐿𝐶))
3837adantr 481 . . . . . . . . 9 ((𝜑𝐴𝐶) → 𝐴 ∈ (𝐵𝐿𝐶))
391, 3, 2, 32, 35, 34, 38tglngne 26263 . . . . . . . 8 ((𝜑𝐴𝐶) → 𝐵𝐶)
4039necomd 3068 . . . . . . 7 ((𝜑𝐴𝐶) → 𝐶𝐵)
411, 2, 3, 32, 34, 35, 33, 40, 38lncom 26335 . . . . . 6 ((𝜑𝐴𝐶) → 𝐴 ∈ (𝐶𝐿𝐵))
421, 2, 3, 32, 33, 34, 35, 36, 41, 40lnrot2 26337 . . . . 5 ((𝜑𝐴𝐶) → 𝐵 ∈ (𝐴𝐿𝐶))
4342adantr 481 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵 ∈ (𝐴𝐿𝐶))
441, 3, 2, 4, 29, 6, 37tglngne 26263 . . . . 5 (𝜑𝐵𝐶)
4544ad2antrr 722 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵𝐶)
461, 2, 3, 24, 26, 27, 28, 30, 31, 43, 45ncolncol 26359 . . 3 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → ¬ (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
4723, 46condan 814 . 2 ((𝜑𝐴𝐶) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
4821, 47pm2.61dane 3101 1 (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 841   = wceq 1528  wcel 2105  wne 3013  cfv 6348  (class class class)co 7145  Basecbs 16471  TarskiGcstrkg 26143  Itvcitv 26149  LineGclng 26150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679  df-word 13850  df-concat 13911  df-s1 13938  df-s2 14198  df-s3 14199  df-trkgc 26161  df-trkgb 26162  df-trkgcb 26163  df-trkg 26166  df-cgrg 26224
This theorem is referenced by:  hlpasch  26469  colhp  26483
  Copyright terms: Public domain W3C validator