MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfffval Structured version   Visualization version   GIF version

Theorem comfffval 16970
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.)
Hypotheses
Ref Expression
comfffval.o 𝑂 = (compf𝐶)
comfffval.b 𝐵 = (Base‘𝐶)
comfffval.h 𝐻 = (Hom ‘𝐶)
comfffval.x · = (comp‘𝐶)
Assertion
Ref Expression
comfffval 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑓,𝑔,𝑥,𝑦,𝐶   · ,𝑓,𝑔,𝑥   𝑓,𝐻,𝑔,𝑥
Allowed substitution hints:   𝐵(𝑓,𝑔)   · (𝑦)   𝐻(𝑦)   𝑂(𝑥,𝑦,𝑓,𝑔)

Proof of Theorem comfffval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 comfffval.o . 2 𝑂 = (compf𝐶)
2 fveq2 6672 . . . . . . 7 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
3 comfffval.b . . . . . . 7 𝐵 = (Base‘𝐶)
42, 3syl6eqr 2876 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
54sqxpeqd 5589 . . . . 5 (𝑐 = 𝐶 → ((Base‘𝑐) × (Base‘𝑐)) = (𝐵 × 𝐵))
6 fveq2 6672 . . . . . . . 8 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
7 comfffval.h . . . . . . . 8 𝐻 = (Hom ‘𝐶)
86, 7syl6eqr 2876 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻)
98oveqd 7175 . . . . . 6 (𝑐 = 𝐶 → ((2nd𝑥)(Hom ‘𝑐)𝑦) = ((2nd𝑥)𝐻𝑦))
108fveq1d 6674 . . . . . 6 (𝑐 = 𝐶 → ((Hom ‘𝑐)‘𝑥) = (𝐻𝑥))
11 fveq2 6672 . . . . . . . . 9 (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶))
12 comfffval.x . . . . . . . . 9 · = (comp‘𝐶)
1311, 12syl6eqr 2876 . . . . . . . 8 (𝑐 = 𝐶 → (comp‘𝑐) = · )
1413oveqd 7175 . . . . . . 7 (𝑐 = 𝐶 → (𝑥(comp‘𝑐)𝑦) = (𝑥 · 𝑦))
1514oveqd 7175 . . . . . 6 (𝑐 = 𝐶 → (𝑔(𝑥(comp‘𝑐)𝑦)𝑓) = (𝑔(𝑥 · 𝑦)𝑓))
169, 10, 15mpoeq123dv 7231 . . . . 5 (𝑐 = 𝐶 → (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓)) = (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
175, 4, 16mpoeq123dv 7231 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓))) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))))
18 df-comf 16944 . . . 4 compf = (𝑐 ∈ V ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓))))
193fvexi 6686 . . . . . 6 𝐵 ∈ V
2019, 19xpex 7478 . . . . 5 (𝐵 × 𝐵) ∈ V
2120, 19mpoex 7779 . . . 4 (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))) ∈ V
2217, 18, 21fvmpt 6770 . . 3 (𝐶 ∈ V → (compf𝐶) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))))
23 fvprc 6665 . . . 4 𝐶 ∈ V → (compf𝐶) = ∅)
24 fvprc 6665 . . . . . . 7 𝐶 ∈ V → (Base‘𝐶) = ∅)
253, 24syl5eq 2870 . . . . . 6 𝐶 ∈ V → 𝐵 = ∅)
2625olcd 870 . . . . 5 𝐶 ∈ V → ((𝐵 × 𝐵) = ∅ ∨ 𝐵 = ∅))
27 0mpo0 7239 . . . . 5 (((𝐵 × 𝐵) = ∅ ∨ 𝐵 = ∅) → (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))) = ∅)
2826, 27syl 17 . . . 4 𝐶 ∈ V → (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))) = ∅)
2923, 28eqtr4d 2861 . . 3 𝐶 ∈ V → (compf𝐶) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))))
3022, 29pm2.61i 184 . 2 (compf𝐶) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
311, 30eqtri 2846 1 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 843   = wceq 1537  wcel 2114  Vcvv 3496  c0 4293   × cxp 5555  cfv 6357  (class class class)co 7158  cmpo 7160  2nd c2nd 7690  Basecbs 16485  Hom chom 16578  compcco 16579  compfccomf 16940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-comf 16944
This theorem is referenced by:  comffval  16971  comfffval2  16973  comfffn  16976  comfeq  16978
  Copyright terms: Public domain W3C validator