MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfffval2 Structured version   Visualization version   GIF version

Theorem comfffval2 16342
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffval2.o 𝑂 = (compf𝐶)
comfffval2.b 𝐵 = (Base‘𝐶)
comfffval2.h 𝐻 = (Homf𝐶)
comfffval2.x · = (comp‘𝐶)
Assertion
Ref Expression
comfffval2 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝐵   𝐶,𝑓,𝑔,𝑥,𝑦   · ,𝑓,𝑔,𝑥
Allowed substitution hints:   · (𝑦)   𝐻(𝑥,𝑦,𝑓,𝑔)   𝑂(𝑥,𝑦,𝑓,𝑔)

Proof of Theorem comfffval2
StepHypRef Expression
1 comfffval2.o . . 3 𝑂 = (compf𝐶)
2 comfffval2.b . . 3 𝐵 = (Base‘𝐶)
3 eqid 2620 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
4 comfffval2.x . . 3 · = (comp‘𝐶)
51, 2, 3, 4comfffval 16339 . 2 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)𝑦), 𝑓 ∈ ((Hom ‘𝐶)‘𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
6 comfffval2.h . . . . 5 𝐻 = (Homf𝐶)
7 xp2nd 7184 . . . . . 6 (𝑥 ∈ (𝐵 × 𝐵) → (2nd𝑥) ∈ 𝐵)
87adantr 481 . . . . 5 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (2nd𝑥) ∈ 𝐵)
9 simpr 477 . . . . 5 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
106, 2, 3, 8, 9homfval 16333 . . . 4 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → ((2nd𝑥)𝐻𝑦) = ((2nd𝑥)(Hom ‘𝐶)𝑦))
11 xp1st 7183 . . . . . . . 8 (𝑥 ∈ (𝐵 × 𝐵) → (1st𝑥) ∈ 𝐵)
1211adantr 481 . . . . . . 7 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (1st𝑥) ∈ 𝐵)
136, 2, 3, 12, 8homfval 16333 . . . . . 6 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → ((1st𝑥)𝐻(2nd𝑥)) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
14 df-ov 6638 . . . . . 6 ((1st𝑥)𝐻(2nd𝑥)) = (𝐻‘⟨(1st𝑥), (2nd𝑥)⟩)
15 df-ov 6638 . . . . . 6 ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩)
1613, 14, 153eqtr3g 2677 . . . . 5 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (𝐻‘⟨(1st𝑥), (2nd𝑥)⟩) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
17 1st2nd2 7190 . . . . . . 7 (𝑥 ∈ (𝐵 × 𝐵) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
1817adantr 481 . . . . . 6 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
1918fveq2d 6182 . . . . 5 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (𝐻𝑥) = (𝐻‘⟨(1st𝑥), (2nd𝑥)⟩))
2018fveq2d 6182 . . . . 5 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
2116, 19, 203eqtr4d 2664 . . . 4 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (𝐻𝑥) = ((Hom ‘𝐶)‘𝑥))
22 eqidd 2621 . . . 4 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (𝑔(𝑥 · 𝑦)𝑓) = (𝑔(𝑥 · 𝑦)𝑓))
2310, 21, 22mpt2eq123dv 6702 . . 3 ((𝑥 ∈ (𝐵 × 𝐵) ∧ 𝑦𝐵) → (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)) = (𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)𝑦), 𝑓 ∈ ((Hom ‘𝐶)‘𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
2423mpt2eq3ia 6705 . 2 (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)𝑦), 𝑓 ∈ ((Hom ‘𝐶)‘𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
255, 24eqtr4i 2645 1 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1481  wcel 1988  cop 4174   × cxp 5102  cfv 5876  (class class class)co 6635  cmpt2 6637  1st c1st 7151  2nd c2nd 7152  Basecbs 15838  Hom chom 15933  compcco 15934  Homf chomf 16308  compfccomf 16309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-1st 7153  df-2nd 7154  df-homf 16312  df-comf 16313
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator