![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > compne | Structured version Visualization version GIF version |
Description: The complement of 𝐴 is not equal to 𝐴. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by BJ, 11-Nov-2021.) |
Ref | Expression |
---|---|
compne | ⊢ (V ∖ 𝐴) ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vn0 4067 | . 2 ⊢ V ≠ ∅ | |
2 | id 22 | . . . . . . 7 ⊢ ((V ∖ 𝐴) = 𝐴 → (V ∖ 𝐴) = 𝐴) | |
3 | difeq1 3864 | . . . . . . . 8 ⊢ ((V ∖ 𝐴) = 𝐴 → ((V ∖ 𝐴) ∖ 𝐴) = (𝐴 ∖ 𝐴)) | |
4 | difabs 4035 | . . . . . . . 8 ⊢ ((V ∖ 𝐴) ∖ 𝐴) = (V ∖ 𝐴) | |
5 | difid 4091 | . . . . . . . 8 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
6 | 3, 4, 5 | 3eqtr3g 2817 | . . . . . . 7 ⊢ ((V ∖ 𝐴) = 𝐴 → (V ∖ 𝐴) = ∅) |
7 | 2, 6 | eqtr3d 2796 | . . . . . 6 ⊢ ((V ∖ 𝐴) = 𝐴 → 𝐴 = ∅) |
8 | 7 | difeq2d 3871 | . . . . 5 ⊢ ((V ∖ 𝐴) = 𝐴 → (V ∖ 𝐴) = (V ∖ ∅)) |
9 | dif0 4093 | . . . . 5 ⊢ (V ∖ ∅) = V | |
10 | 8, 9 | syl6eq 2810 | . . . 4 ⊢ ((V ∖ 𝐴) = 𝐴 → (V ∖ 𝐴) = V) |
11 | 10, 6 | eqtr3d 2796 | . . 3 ⊢ ((V ∖ 𝐴) = 𝐴 → V = ∅) |
12 | 11 | necon3i 2964 | . 2 ⊢ (V ≠ ∅ → (V ∖ 𝐴) ≠ 𝐴) |
13 | 1, 12 | ax-mp 5 | 1 ⊢ (V ∖ 𝐴) ≠ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ≠ wne 2932 Vcvv 3340 ∖ cdif 3712 ∅c0 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |