MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  compss Structured version   Visualization version   GIF version

Theorem compss 9236
Description: Express image under of the complementation isomorphism. (Contributed by Stefan O'Rear, 5-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
compss (𝐹𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴𝑦) ∈ 𝐺}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐹   𝑦,𝐺
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem compss
StepHypRef Expression
1 compss.a . . . 4 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
21compsscnv 9231 . . 3 𝐹 = 𝐹
32imaeq1i 5498 . 2 (𝐹𝐺) = (𝐹𝐺)
4 difeq2 3755 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
54cbvmptv 4783 . . . 4 (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥)) = (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴𝑦))
61, 5eqtri 2673 . . 3 𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴𝑦))
76mptpreima 5666 . 2 (𝐹𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴𝑦) ∈ 𝐺}
83, 7eqtr3i 2675 1 (𝐹𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴𝑦) ∈ 𝐺}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1523  wcel 2030  {crab 2945  cdif 3604  𝒫 cpw 4191  cmpt 4762  ccnv 5142  cima 5146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-mpt 4763  df-xp 5149  df-rel 5150  df-cnv 5151  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156
This theorem is referenced by:  isf34lem4  9237
  Copyright terms: Public domain W3C validator