![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > compss | Structured version Visualization version GIF version |
Description: Express image under of the complementation isomorphism. (Contributed by Stefan O'Rear, 5-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
compss.a | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
Ref | Expression |
---|---|
compss | ⊢ (𝐹 “ 𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑦) ∈ 𝐺} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | compss.a | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) | |
2 | 1 | compsscnv 9231 | . . 3 ⊢ ◡𝐹 = 𝐹 |
3 | 2 | imaeq1i 5498 | . 2 ⊢ (◡𝐹 “ 𝐺) = (𝐹 “ 𝐺) |
4 | difeq2 3755 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑦)) | |
5 | 4 | cbvmptv 4783 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) = (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑦)) |
6 | 1, 5 | eqtri 2673 | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑦)) |
7 | 6 | mptpreima 5666 | . 2 ⊢ (◡𝐹 “ 𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑦) ∈ 𝐺} |
8 | 3, 7 | eqtr3i 2675 | 1 ⊢ (𝐹 “ 𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑦) ∈ 𝐺} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 {crab 2945 ∖ cdif 3604 𝒫 cpw 4191 ↦ cmpt 4762 ◡ccnv 5142 “ cima 5146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-mpt 4763 df-xp 5149 df-rel 5150 df-cnv 5151 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 |
This theorem is referenced by: isf34lem4 9237 |
Copyright terms: Public domain | W3C validator |