![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > compsscnv | Structured version Visualization version GIF version |
Description: Complementation on a power set lattice is an involution. (Contributed by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
compss.a | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
Ref | Expression |
---|---|
compsscnv | ⊢ ◡𝐹 = 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvopab 5683 | . 2 ⊢ ◡{〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} = {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} | |
2 | compss.a | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) | |
3 | difeq2 3857 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑦)) | |
4 | 3 | cbvmptv 4894 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) = (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑦)) |
5 | df-mpt 4874 | . . . 4 ⊢ (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑦)) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} | |
6 | 2, 4, 5 | 3eqtri 2778 | . . 3 ⊢ 𝐹 = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} |
7 | 6 | cnveqi 5444 | . 2 ⊢ ◡𝐹 = ◡{〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} |
8 | df-mpt 4874 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥))} | |
9 | compsscnvlem 9376 | . . . . 5 ⊢ ((𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦)) → (𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥))) | |
10 | compsscnvlem 9376 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))) | |
11 | 9, 10 | impbii 199 | . . . 4 ⊢ ((𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦)) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥))) |
12 | 11 | opabbii 4861 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥))} |
13 | 8, 2, 12 | 3eqtr4i 2784 | . 2 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))} |
14 | 1, 7, 13 | 3eqtr4i 2784 | 1 ⊢ ◡𝐹 = 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1624 ∈ wcel 2131 ∖ cdif 3704 𝒫 cpw 4294 {copab 4856 ↦ cmpt 4873 ◡ccnv 5257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pr 5047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rab 3051 df-v 3334 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-br 4797 df-opab 4857 df-mpt 4874 df-xp 5264 df-rel 5265 df-cnv 5266 |
This theorem is referenced by: compssiso 9380 isf34lem3 9381 compss 9382 isf34lem5 9384 |
Copyright terms: Public domain | W3C validator |