![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con1bid | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999.) |
Ref | Expression |
---|---|
con1bid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
con1bid | ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1bid.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) | |
2 | 1 | bicomd 213 | . . 3 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
3 | 2 | con2bid 343 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
4 | 3 | bicomd 213 | 1 ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: pm5.18 370 necon1bbid 2862 r19.9rzv 4098 onmindif 5853 iotanul 5904 ondif2 7627 cnpart 14024 sadadd2lem2 15219 isnirred 18746 isreg2 21229 kqcldsat 21584 trufil 21761 itg2cnlem2 23574 issqf 24907 eupth2lem3lem4 27209 pjnorm2 28714 atdmd 29385 atmd2 29387 dfrdg4 32183 dalawlem13 35487 |
Copyright terms: Public domain | W3C validator |