Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  congrep Structured version   Visualization version   GIF version

Theorem congrep 37020
Description: Every integer is congruent to some number in the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
congrep ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...(𝐴 − 1))𝐴 ∥ (𝑎𝑁))
Distinct variable groups:   𝐴,𝑎   𝑁,𝑎

Proof of Theorem congrep
StepHypRef Expression
1 zmodfz 12632 . . 3 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑁 mod 𝐴) ∈ (0...(𝐴 − 1)))
21ancoms 469 . 2 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝐴) ∈ (0...(𝐴 − 1)))
3 nnz 11343 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
43adantr 481 . . 3 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℤ)
5 simpr 477 . . 3 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
6 zmodcl 12630 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑁 mod 𝐴) ∈ ℕ0)
76ancoms 469 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝐴) ∈ ℕ0)
87nn0zd 11424 . . 3 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝐴) ∈ ℤ)
9 zre 11325 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
10 nnrp 11786 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+)
11 moddifz 12622 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑁 − (𝑁 mod 𝐴)) / 𝐴) ∈ ℤ)
129, 10, 11syl2anr 495 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑁 − (𝑁 mod 𝐴)) / 𝐴) ∈ ℤ)
13 nnne0 10997 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
1413adantr 481 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ≠ 0)
155, 8zsubcld 11431 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 − (𝑁 mod 𝐴)) ∈ ℤ)
16 dvdsval2 14910 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ∧ (𝑁 − (𝑁 mod 𝐴)) ∈ ℤ) → (𝐴 ∥ (𝑁 − (𝑁 mod 𝐴)) ↔ ((𝑁 − (𝑁 mod 𝐴)) / 𝐴) ∈ ℤ))
174, 14, 15, 16syl3anc 1323 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝐴 ∥ (𝑁 − (𝑁 mod 𝐴)) ↔ ((𝑁 − (𝑁 mod 𝐴)) / 𝐴) ∈ ℤ))
1812, 17mpbird 247 . . 3 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ∥ (𝑁 − (𝑁 mod 𝐴)))
19 congsym 37015 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑁 mod 𝐴) ∈ ℤ ∧ 𝐴 ∥ (𝑁 − (𝑁 mod 𝐴)))) → 𝐴 ∥ ((𝑁 mod 𝐴) − 𝑁))
204, 5, 8, 18, 19syl22anc 1324 . 2 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ∥ ((𝑁 mod 𝐴) − 𝑁))
21 oveq1 6611 . . . 4 (𝑎 = (𝑁 mod 𝐴) → (𝑎𝑁) = ((𝑁 mod 𝐴) − 𝑁))
2221breq2d 4625 . . 3 (𝑎 = (𝑁 mod 𝐴) → (𝐴 ∥ (𝑎𝑁) ↔ 𝐴 ∥ ((𝑁 mod 𝐴) − 𝑁)))
2322rspcev 3295 . 2 (((𝑁 mod 𝐴) ∈ (0...(𝐴 − 1)) ∧ 𝐴 ∥ ((𝑁 mod 𝐴) − 𝑁)) → ∃𝑎 ∈ (0...(𝐴 − 1))𝐴 ∥ (𝑎𝑁))
242, 20, 23syl2anc 692 1 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...(𝐴 − 1))𝐴 ∥ (𝑎𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wrex 2908   class class class wbr 4613  (class class class)co 6604  cr 9879  0cc0 9880  1c1 9881  cmin 10210   / cdiv 10628  cn 10964  0cn0 11236  cz 11321  +crp 11776  ...cfz 12268   mod cmo 12608  cdvds 14907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fl 12533  df-mod 12609  df-dvds 14908
This theorem is referenced by:  acongrep  37027
  Copyright terms: Public domain W3C validator