MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjnsg Structured version   Visualization version   GIF version

Theorem conjnsg 18396
Description: A normal subgroup is unchanged under conjugation. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x 𝑋 = (Base‘𝐺)
conjghm.p + = (+g𝐺)
conjghm.m = (-g𝐺)
conjsubg.f 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
Assertion
Ref Expression
conjnsg ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆 = ran 𝐹)
Distinct variable groups:   𝑥,   𝑥, +   𝑥,𝐴   𝑥,𝐺   𝑥,𝑆   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem conjnsg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgsubg 18312 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
2 eqid 2823 . . . . . 6 {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} = {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}
3 conjghm.x . . . . . 6 𝑋 = (Base‘𝐺)
4 conjghm.p . . . . . 6 + = (+g𝐺)
52, 3, 4isnsg4 18321 . . . . 5 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} = 𝑋))
65simprbi 499 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} = 𝑋)
76eleq2d 2900 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (𝐴 ∈ {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} ↔ 𝐴𝑋))
87biimpar 480 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋) → 𝐴 ∈ {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)})
9 conjghm.m . . 3 = (-g𝐺)
10 conjsubg.f . . 3 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
113, 4, 9, 10, 2conjnmz 18394 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}) → 𝑆 = ran 𝐹)
121, 8, 11syl2an2r 683 1 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆 = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  {crab 3144  cmpt 5148  ran crn 5558  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  -gcsg 18107  SubGrpcsubg 18275  NrmSGrpcnsg 18276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-nsg 18279
This theorem is referenced by:  sylow3lem6  18759
  Copyright terms: Public domain W3C validator