![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > connclo | Structured version Visualization version GIF version |
Description: The only nonempty clopen set of a connected topology is the whole space. (Contributed by Mario Carneiro, 10-Mar-2015.) |
Ref | Expression |
---|---|
isconn.1 | ⊢ 𝑋 = ∪ 𝐽 |
connclo.1 | ⊢ (𝜑 → 𝐽 ∈ Conn) |
connclo.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
connclo.3 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
connclo.4 | ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) |
Ref | Expression |
---|---|
connclo | ⊢ (𝜑 → 𝐴 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | connclo.3 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
2 | 1 | neneqd 2828 | . 2 ⊢ (𝜑 → ¬ 𝐴 = ∅) |
3 | connclo.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐽) | |
4 | connclo.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) | |
5 | 3, 4 | elind 3831 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽))) |
6 | connclo.1 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Conn) | |
7 | isconn.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
8 | 7 | isconn 21264 | . . . . . . 7 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
9 | 8 | simprbi 479 | . . . . . 6 ⊢ (𝐽 ∈ Conn → (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}) |
10 | 6, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}) |
11 | 5, 10 | eleqtrd 2732 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ {∅, 𝑋}) |
12 | elpri 4230 | . . . 4 ⊢ (𝐴 ∈ {∅, 𝑋} → (𝐴 = ∅ ∨ 𝐴 = 𝑋)) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 = ∅ ∨ 𝐴 = 𝑋)) |
14 | 13 | ord 391 | . 2 ⊢ (𝜑 → (¬ 𝐴 = ∅ → 𝐴 = 𝑋)) |
15 | 2, 14 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 382 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∩ cin 3606 ∅c0 3948 {cpr 4212 ∪ cuni 4468 ‘cfv 5926 Topctop 20746 Clsdccld 20868 Conncconn 21262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-iota 5889 df-fv 5934 df-conn 21263 |
This theorem is referenced by: conndisj 21267 cnconn 21273 connsubclo 21275 t1connperf 21287 txconn 21540 connpconn 31343 cvmliftmolem2 31390 cvmlift2lem12 31422 mblfinlem1 33576 |
Copyright terms: Public domain | W3C validator |