MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncompclo Structured version   Visualization version   GIF version

Theorem conncompclo 21219
Description: The connected component containing 𝐴 is a subset of any clopen set containing 𝐴. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypothesis
Ref Expression
conncomp.2 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
Assertion
Ref Expression
conncompclo ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝑆𝑇)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑋
Allowed substitution hints:   𝑆(𝑥)   𝑇(𝑥)

Proof of Theorem conncompclo
StepHypRef Expression
1 eqid 2620 . 2 𝐽 = 𝐽
2 simp1 1059 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝐽 ∈ (TopOn‘𝑋))
3 inss1 3825 . . . . . . 7 (𝐽 ∩ (Clsd‘𝐽)) ⊆ 𝐽
4 simp2 1060 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)))
53, 4sseldi 3593 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝑇𝐽)
6 toponss 20712 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇𝐽) → 𝑇𝑋)
72, 5, 6syl2anc 692 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝑇𝑋)
8 simp3 1061 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝐴𝑇)
97, 8sseldd 3596 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝐴𝑋)
10 conncomp.2 . . . . 5 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
1110conncompcld 21218 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑆 ∈ (Clsd‘𝐽))
122, 9, 11syl2anc 692 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝑆 ∈ (Clsd‘𝐽))
131cldss 20814 . . 3 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
1412, 13syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝑆 𝐽)
1510conncompconn 21216 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝑆) ∈ Conn)
162, 9, 15syl2anc 692 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → (𝐽t 𝑆) ∈ Conn)
1710conncompid 21215 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑆)
182, 9, 17syl2anc 692 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝐴𝑆)
19 inelcm 4023 . . 3 ((𝐴𝑇𝐴𝑆) → (𝑇𝑆) ≠ ∅)
208, 18, 19syl2anc 692 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → (𝑇𝑆) ≠ ∅)
21 inss2 3826 . . 3 (𝐽 ∩ (Clsd‘𝐽)) ⊆ (Clsd‘𝐽)
2221, 4sseldi 3593 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝑇 ∈ (Clsd‘𝐽))
231, 14, 16, 5, 20, 22connsubclo 21208 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴𝑇) → 𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791  {crab 2913  cin 3566  wss 3567  c0 3907  𝒫 cpw 4149   cuni 4427  cfv 5876  (class class class)co 6635  t crest 16062  TopOnctopon 20696  Clsdccld 20801  Conncconn 21195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-oadd 7549  df-er 7727  df-en 7941  df-fin 7944  df-fi 8302  df-rest 16064  df-topgen 16085  df-top 20680  df-topon 20697  df-bases 20731  df-cld 20804  df-ntr 20805  df-cls 20806  df-conn 21196
This theorem is referenced by:  tgpconncompss  21898
  Copyright terms: Public domain W3C validator