MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conngrv2edg Structured version   Visualization version   GIF version

Theorem conngrv2edg 26921
Description: A vertex in a connected graph with more than one vertex is incident with at least one edge. Formerly part of proof for vdgn0frgrv2 27023. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 4-Apr-2021.)
Hypotheses
Ref Expression
conngrv2edg.v 𝑉 = (Vtx‘𝐺)
conngrv2edg.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
conngrv2edg ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)
Distinct variable groups:   𝑒,𝐺   𝑒,𝐼   𝑒,𝑁
Allowed substitution hint:   𝑉(𝑒)

Proof of Theorem conngrv2edg
Dummy variables 𝑎 𝑏 𝑓 𝑝 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 conngrv2edg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 fvex 6158 . . . 4 (Vtx‘𝐺) ∈ V
31, 2eqeltri 2694 . . 3 𝑉 ∈ V
4 simp3 1061 . . 3 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → 1 < (#‘𝑉))
5 simp2 1060 . . 3 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → 𝑁𝑉)
6 hashgt12el2 13151 . . 3 ((𝑉 ∈ V ∧ 1 < (#‘𝑉) ∧ 𝑁𝑉) → ∃𝑣𝑉 𝑁𝑣)
73, 4, 5, 6mp3an2i 1426 . 2 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → ∃𝑣𝑉 𝑁𝑣)
81isconngr 26915 . . . . . . . 8 (𝐺 ∈ ConnGraph → (𝐺 ∈ ConnGraph ↔ ∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝))
9 oveq1 6611 . . . . . . . . . . . . 13 (𝑎 = 𝑁 → (𝑎(PathsOn‘𝐺)𝑏) = (𝑁(PathsOn‘𝐺)𝑏))
109breqd 4624 . . . . . . . . . . . 12 (𝑎 = 𝑁 → (𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝))
11102exbidv 1849 . . . . . . . . . . 11 (𝑎 = 𝑁 → (∃𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝))
12 oveq2 6612 . . . . . . . . . . . . 13 (𝑏 = 𝑣 → (𝑁(PathsOn‘𝐺)𝑏) = (𝑁(PathsOn‘𝐺)𝑣))
1312breqd 4624 . . . . . . . . . . . 12 (𝑏 = 𝑣 → (𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝))
14132exbidv 1849 . . . . . . . . . . 11 (𝑏 = 𝑣 → (∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝))
1511, 14rspc2v 3306 . . . . . . . . . 10 ((𝑁𝑉𝑣𝑉) → (∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝))
1615ad2ant2r 782 . . . . . . . . 9 (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝))
17 pthontrlon 26512 . . . . . . . . . . . 12 (𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝𝑓(𝑁(TrailsOn‘𝐺)𝑣)𝑝)
18 trlsonwlkon 26475 . . . . . . . . . . . 12 (𝑓(𝑁(TrailsOn‘𝐺)𝑣)𝑝𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝)
19 simpl 473 . . . . . . . . . . . . . 14 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ ((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣))) → 𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝)
20 simprr 795 . . . . . . . . . . . . . . 15 (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → 𝑁𝑣)
21 wlkon2n0 26431 . . . . . . . . . . . . . . 15 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝𝑁𝑣) → (#‘𝑓) ≠ 0)
2220, 21sylan2 491 . . . . . . . . . . . . . 14 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ ((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣))) → (#‘𝑓) ≠ 0)
2319, 22jca 554 . . . . . . . . . . . . 13 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ ((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣))) → (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (#‘𝑓) ≠ 0))
2423ex 450 . . . . . . . . . . . 12 (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 → (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (#‘𝑓) ≠ 0)))
2517, 18, 243syl 18 . . . . . . . . . . 11 (𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝 → (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (#‘𝑓) ≠ 0)))
26 conngrv2edg.i . . . . . . . . . . . 12 𝐼 = (iEdg‘𝐺)
2726wlkonl1iedg 26430 . . . . . . . . . . 11 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (#‘𝑓) ≠ 0) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)
2825, 27syl6com 37 . . . . . . . . . 10 (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
2928exlimdvv 1859 . . . . . . . . 9 (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
3016, 29syldc 48 . . . . . . . 8 (∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 → (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
318, 30syl6bi 243 . . . . . . 7 (𝐺 ∈ ConnGraph → (𝐺 ∈ ConnGraph → (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)))
3231pm2.43i 52 . . . . . 6 (𝐺 ∈ ConnGraph → (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
3332expd 452 . . . . 5 (𝐺 ∈ ConnGraph → ((𝑁𝑉 ∧ 1 < (#‘𝑉)) → ((𝑣𝑉𝑁𝑣) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)))
34333impib 1259 . . . 4 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → ((𝑣𝑉𝑁𝑣) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
3534expd 452 . . 3 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → (𝑣𝑉 → (𝑁𝑣 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)))
3635rexlimdv 3023 . 2 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → (∃𝑣𝑉 𝑁𝑣 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
377, 36mpd 15 1 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  wne 2790  wral 2907  wrex 2908  Vcvv 3186   class class class wbr 4613  ran crn 5075  cfv 5847  (class class class)co 6604  0cc0 9880  1c1 9881   < clt 10018  #chash 13057  Vtxcvtx 25774  iEdgciedg 25775  WalksOncwlkson 26363  TrailsOnctrlson 26457  PathsOncpthson 26479  ConnGraphcconngr 26912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1012  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-wlks 26365  df-wlkson 26366  df-trls 26458  df-trlson 26459  df-pths 26481  df-pthson 26483  df-conngr 26913
This theorem is referenced by:  vdn0conngrumgrv2  26922
  Copyright terms: Public domain W3C validator