Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  conngrv2edg Structured version   Visualization version   GIF version

Theorem conngrv2edg 26921
 Description: A vertex in a connected graph with more than one vertex is incident with at least one edge. Formerly part of proof for vdgn0frgrv2 27023. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 4-Apr-2021.)
Hypotheses
Ref Expression
conngrv2edg.v 𝑉 = (Vtx‘𝐺)
conngrv2edg.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
conngrv2edg ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)
Distinct variable groups:   𝑒,𝐺   𝑒,𝐼   𝑒,𝑁
Allowed substitution hint:   𝑉(𝑒)

Proof of Theorem conngrv2edg
Dummy variables 𝑎 𝑏 𝑓 𝑝 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 conngrv2edg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 fvex 6158 . . . 4 (Vtx‘𝐺) ∈ V
31, 2eqeltri 2694 . . 3 𝑉 ∈ V
4 simp3 1061 . . 3 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → 1 < (#‘𝑉))
5 simp2 1060 . . 3 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → 𝑁𝑉)
6 hashgt12el2 13151 . . 3 ((𝑉 ∈ V ∧ 1 < (#‘𝑉) ∧ 𝑁𝑉) → ∃𝑣𝑉 𝑁𝑣)
73, 4, 5, 6mp3an2i 1426 . 2 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → ∃𝑣𝑉 𝑁𝑣)
81isconngr 26915 . . . . . . . 8 (𝐺 ∈ ConnGraph → (𝐺 ∈ ConnGraph ↔ ∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝))
9 oveq1 6611 . . . . . . . . . . . . 13 (𝑎 = 𝑁 → (𝑎(PathsOn‘𝐺)𝑏) = (𝑁(PathsOn‘𝐺)𝑏))
109breqd 4624 . . . . . . . . . . . 12 (𝑎 = 𝑁 → (𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝))
11102exbidv 1849 . . . . . . . . . . 11 (𝑎 = 𝑁 → (∃𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝))
12 oveq2 6612 . . . . . . . . . . . . 13 (𝑏 = 𝑣 → (𝑁(PathsOn‘𝐺)𝑏) = (𝑁(PathsOn‘𝐺)𝑣))
1312breqd 4624 . . . . . . . . . . . 12 (𝑏 = 𝑣 → (𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝))
14132exbidv 1849 . . . . . . . . . . 11 (𝑏 = 𝑣 → (∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝))
1511, 14rspc2v 3306 . . . . . . . . . 10 ((𝑁𝑉𝑣𝑉) → (∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝))
1615ad2ant2r 782 . . . . . . . . 9 (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝))
17 pthontrlon 26512 . . . . . . . . . . . 12 (𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝𝑓(𝑁(TrailsOn‘𝐺)𝑣)𝑝)
18 trlsonwlkon 26475 . . . . . . . . . . . 12 (𝑓(𝑁(TrailsOn‘𝐺)𝑣)𝑝𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝)
19 simpl 473 . . . . . . . . . . . . . 14 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ ((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣))) → 𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝)
20 simprr 795 . . . . . . . . . . . . . . 15 (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → 𝑁𝑣)
21 wlkon2n0 26431 . . . . . . . . . . . . . . 15 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝𝑁𝑣) → (#‘𝑓) ≠ 0)
2220, 21sylan2 491 . . . . . . . . . . . . . 14 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ ((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣))) → (#‘𝑓) ≠ 0)
2319, 22jca 554 . . . . . . . . . . . . 13 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ ((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣))) → (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (#‘𝑓) ≠ 0))
2423ex 450 . . . . . . . . . . . 12 (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 → (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (#‘𝑓) ≠ 0)))
2517, 18, 243syl 18 . . . . . . . . . . 11 (𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝 → (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (#‘𝑓) ≠ 0)))
26 conngrv2edg.i . . . . . . . . . . . 12 𝐼 = (iEdg‘𝐺)
2726wlkonl1iedg 26430 . . . . . . . . . . 11 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (#‘𝑓) ≠ 0) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)
2825, 27syl6com 37 . . . . . . . . . 10 (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
2928exlimdvv 1859 . . . . . . . . 9 (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
3016, 29syldc 48 . . . . . . . 8 (∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 → (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
318, 30syl6bi 243 . . . . . . 7 (𝐺 ∈ ConnGraph → (𝐺 ∈ ConnGraph → (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)))
3231pm2.43i 52 . . . . . 6 (𝐺 ∈ ConnGraph → (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
3332expd 452 . . . . 5 (𝐺 ∈ ConnGraph → ((𝑁𝑉 ∧ 1 < (#‘𝑉)) → ((𝑣𝑉𝑁𝑣) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)))
34333impib 1259 . . . 4 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → ((𝑣𝑉𝑁𝑣) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
3534expd 452 . . 3 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → (𝑣𝑉 → (𝑁𝑣 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)))
3635rexlimdv 3023 . 2 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → (∃𝑣𝑉 𝑁𝑣 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
377, 36mpd 15 1 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480  ∃wex 1701   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907  ∃wrex 2908  Vcvv 3186   class class class wbr 4613  ran crn 5075  ‘cfv 5847  (class class class)co 6604  0cc0 9880  1c1 9881   < clt 10018  #chash 13057  Vtxcvtx 25774  iEdgciedg 25775  WalksOncwlkson 26363  TrailsOnctrlson 26457  PathsOncpthson 26479  ConnGraphcconngr 26912 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1012  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-wlks 26365  df-wlkson 26366  df-trls 26458  df-trlson 26459  df-pths 26481  df-pthson 26483  df-conngr 26913 This theorem is referenced by:  vdn0conngrumgrv2  26922
 Copyright terms: Public domain W3C validator