Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  connpconn Structured version   Visualization version   GIF version

Theorem connpconn 32379
Description: A connected and locally path-connected space is path-connected. (Contributed by Mario Carneiro, 7-Jul-2015.)
Assertion
Ref Expression
connpconn ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) → 𝐽 ∈ PConn)

Proof of Theorem connpconn
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑔 𝑠 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 conntop 21953 . . 3 (𝐽 ∈ Conn → 𝐽 ∈ Top)
21adantr 481 . 2 ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) → 𝐽 ∈ Top)
3 eqid 2818 . . . . . 6 𝐽 = 𝐽
4 simpll 763 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → 𝐽 ∈ Conn)
5 inss1 4202 . . . . . . 7 (𝐽 ∩ (Clsd‘𝐽)) ⊆ 𝐽
6 simplr 765 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → 𝐽 ∈ 𝑛-Locally PConn)
71ad2antrr 722 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → 𝐽 ∈ Top)
83topopn 21442 . . . . . . . . . . . . 13 (𝐽 ∈ Top → 𝐽𝐽)
97, 8syl 17 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → 𝐽𝐽)
10 simprr 769 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → 𝑧 𝐽)
11 nlly2i 22012 . . . . . . . . . . . 12 ((𝐽 ∈ 𝑛-Locally PConn ∧ 𝐽𝐽𝑧 𝐽) → ∃𝑠 ∈ 𝒫 𝐽𝑢𝐽 (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))
126, 9, 10, 11syl3anc 1363 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → ∃𝑠 ∈ 𝒫 𝐽𝑢𝐽 (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))
13 simprr1 1213 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → 𝑧𝑢)
14 eqeq2 2830 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → ((𝑓‘1) = 𝑦 ↔ (𝑓‘1) = 𝑤))
1514anbi2d 628 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑤 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤)))
1615rexbidv 3294 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑤 → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤)))
1716elrab 3677 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ↔ (𝑤 𝐽 ∧ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤)))
1817simprbi 497 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤))
19 simprr3 1215 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → (𝐽t 𝑠) ∈ PConn)
2019adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → (𝐽t 𝑠) ∈ PConn)
21 simprr2 1214 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → 𝑢𝑠)
2221adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑢𝑠)
23 simprll 775 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑤𝑢)
2422, 23sseldd 3965 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑤𝑠)
257ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝐽 ∈ Top)
26 elpwi 4547 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 ∈ 𝒫 𝐽𝑠 𝐽)
2726ad2antrl 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → 𝑠 𝐽)
2827adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑠 𝐽)
293restuni 21698 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐽 ∈ Top ∧ 𝑠 𝐽) → 𝑠 = (𝐽t 𝑠))
3025, 28, 29syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑠 = (𝐽t 𝑠))
3124, 30eleqtrd 2912 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑤 (𝐽t 𝑠))
32 simprr 769 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑦𝑢)
3322, 32sseldd 3965 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑦𝑠)
3433, 30eleqtrd 2912 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑦 (𝐽t 𝑠))
35 eqid 2818 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐽t 𝑠) = (𝐽t 𝑠)
3635pconncn 32368 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐽t 𝑠) ∈ PConn ∧ 𝑤 (𝐽t 𝑠) ∧ 𝑦 (𝐽t 𝑠)) → ∃ ∈ (II Cn (𝐽t 𝑠))((‘0) = 𝑤 ∧ (‘1) = 𝑦))
3720, 31, 34, 36syl3anc 1363 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → ∃ ∈ (II Cn (𝐽t 𝑠))((‘0) = 𝑤 ∧ (‘1) = 𝑦))
38 simplrl 773 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢) → 𝑔 ∈ (II Cn 𝐽))
3938ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → 𝑔 ∈ (II Cn 𝐽))
4025adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → 𝐽 ∈ Top)
41 cnrest2r 21823 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐽 ∈ Top → (II Cn (𝐽t 𝑠)) ⊆ (II Cn 𝐽))
4240, 41syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (II Cn (𝐽t 𝑠)) ⊆ (II Cn 𝐽))
43 simprl 767 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ∈ (II Cn (𝐽t 𝑠)))
4442, 43sseldd 3965 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ∈ (II Cn 𝐽))
45 simplrr 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢) → ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))
4645ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))
4746simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (𝑔‘1) = 𝑤)
48 simprrl 777 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (‘0) = 𝑤)
4947, 48eqtr4d 2856 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (𝑔‘1) = (‘0))
5039, 44, 49pcocn 23548 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (𝑔(*𝑝𝐽)) ∈ (II Cn 𝐽))
5139, 44pco0 23545 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔(*𝑝𝐽))‘0) = (𝑔‘0))
5246simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (𝑔‘0) = 𝑥)
5351, 52eqtrd 2853 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔(*𝑝𝐽))‘0) = 𝑥)
5439, 44pco1 23546 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔(*𝑝𝐽))‘1) = (‘1))
55 simprrr 778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (‘1) = 𝑦)
5654, 55eqtrd 2853 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔(*𝑝𝐽))‘1) = 𝑦)
57 fveq1 6662 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = (𝑔(*𝑝𝐽)) → (𝑓‘0) = ((𝑔(*𝑝𝐽))‘0))
5857eqeq1d 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = (𝑔(*𝑝𝐽)) → ((𝑓‘0) = 𝑥 ↔ ((𝑔(*𝑝𝐽))‘0) = 𝑥))
59 fveq1 6662 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = (𝑔(*𝑝𝐽)) → (𝑓‘1) = ((𝑔(*𝑝𝐽))‘1))
6059eqeq1d 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = (𝑔(*𝑝𝐽)) → ((𝑓‘1) = 𝑦 ↔ ((𝑔(*𝑝𝐽))‘1) = 𝑦))
6158, 60anbi12d 630 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = (𝑔(*𝑝𝐽)) → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ (((𝑔(*𝑝𝐽))‘0) = 𝑥 ∧ ((𝑔(*𝑝𝐽))‘1) = 𝑦)))
6261rspcev 3620 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑔(*𝑝𝐽)) ∈ (II Cn 𝐽) ∧ (((𝑔(*𝑝𝐽))‘0) = 𝑥 ∧ ((𝑔(*𝑝𝐽))‘1) = 𝑦)) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6350, 53, 56, 62syl12anc 832 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6437, 63rexlimddv 3288 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6564anassrs 468 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ (𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤)))) ∧ 𝑦𝑢) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6665ralrimiva 3179 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ (𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤)))) → ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6766anassrs 468 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) → ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6867rexlimdvaa 3282 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → (∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤) → ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
6921adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → 𝑢𝑠)
70 simplrl 773 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → 𝑠 ∈ 𝒫 𝐽)
7170, 26syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → 𝑠 𝐽)
7269, 71sstrd 3974 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → 𝑢 𝐽)
7368, 72jctild 526 . . . . . . . . . . . . . . . . . 18 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → (∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤) → (𝑢 𝐽 ∧ ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))))
74 fveq1 6662 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑔 → (𝑓‘0) = (𝑔‘0))
7574eqeq1d 2820 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → ((𝑓‘0) = 𝑥 ↔ (𝑔‘0) = 𝑥))
76 fveq1 6662 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑔 → (𝑓‘1) = (𝑔‘1))
7776eqeq1d 2820 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → ((𝑓‘1) = 𝑤 ↔ (𝑔‘1) = 𝑤))
7875, 77anbi12d 630 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤) ↔ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤)))
7978cbvrexvw 3448 . . . . . . . . . . . . . . . . . 18 (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤) ↔ ∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))
80 ssrab 4046 . . . . . . . . . . . . . . . . . 18 (𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ↔ (𝑢 𝐽 ∧ ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
8173, 79, 803imtr4g 297 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤) → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))
8218, 81syl5 34 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))
8382ralrimiva 3179 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))
8413, 83jca 512 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})))
8584expr 457 . . . . . . . . . . . . 13 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ 𝑠 ∈ 𝒫 𝐽) → ((𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn) → (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
8685reximdv 3270 . . . . . . . . . . . 12 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ 𝑠 ∈ 𝒫 𝐽) → (∃𝑢𝐽 (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn) → ∃𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
8786rexlimdva 3281 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → (∃𝑠 ∈ 𝒫 𝐽𝑢𝐽 (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn) → ∃𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
8812, 87mpd 15 . . . . . . . . . 10 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → ∃𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})))
8988anassrs 468 . . . . . . . . 9 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) ∧ 𝑧 𝐽) → ∃𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})))
9089ralrimiva 3179 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → ∀𝑧 𝐽𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})))
911ad2antrr 722 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → 𝐽 ∈ Top)
92 ssrab2 4053 . . . . . . . . 9 {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ⊆ 𝐽
933isclo2 21624 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ⊆ 𝐽) → ({𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑧 𝐽𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
9491, 92, 93sylancl 586 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → ({𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑧 𝐽𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
9590, 94mpbird 258 . . . . . . 7 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ (𝐽 ∩ (Clsd‘𝐽)))
965, 95sseldi 3962 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ 𝐽)
97 simpr 485 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → 𝑥 𝐽)
98 iitopon 23414 . . . . . . . . . 10 II ∈ (TopOn‘(0[,]1))
9998a1i 11 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → II ∈ (TopOn‘(0[,]1)))
1003toptopon 21453 . . . . . . . . . 10 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
10191, 100sylib 219 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → 𝐽 ∈ (TopOn‘ 𝐽))
102 cnconst2 21819 . . . . . . . . 9 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑥 𝐽) → ((0[,]1) × {𝑥}) ∈ (II Cn 𝐽))
10399, 101, 97, 102syl3anc 1363 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → ((0[,]1) × {𝑥}) ∈ (II Cn 𝐽))
104 0elunit 12843 . . . . . . . . 9 0 ∈ (0[,]1)
105 vex 3495 . . . . . . . . . 10 𝑥 ∈ V
106105fvconst2 6958 . . . . . . . . 9 (0 ∈ (0[,]1) → (((0[,]1) × {𝑥})‘0) = 𝑥)
107104, 106mp1i 13 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → (((0[,]1) × {𝑥})‘0) = 𝑥)
108 1elunit 12844 . . . . . . . . 9 1 ∈ (0[,]1)
109105fvconst2 6958 . . . . . . . . 9 (1 ∈ (0[,]1) → (((0[,]1) × {𝑥})‘1) = 𝑥)
110108, 109mp1i 13 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → (((0[,]1) × {𝑥})‘1) = 𝑥)
111 eqeq2 2830 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝑓‘1) = 𝑦 ↔ (𝑓‘1) = 𝑥))
112111anbi2d 628 . . . . . . . . 9 (𝑦 = 𝑥 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑥)))
113 fveq1 6662 . . . . . . . . . . 11 (𝑓 = ((0[,]1) × {𝑥}) → (𝑓‘0) = (((0[,]1) × {𝑥})‘0))
114113eqeq1d 2820 . . . . . . . . . 10 (𝑓 = ((0[,]1) × {𝑥}) → ((𝑓‘0) = 𝑥 ↔ (((0[,]1) × {𝑥})‘0) = 𝑥))
115 fveq1 6662 . . . . . . . . . . 11 (𝑓 = ((0[,]1) × {𝑥}) → (𝑓‘1) = (((0[,]1) × {𝑥})‘1))
116115eqeq1d 2820 . . . . . . . . . 10 (𝑓 = ((0[,]1) × {𝑥}) → ((𝑓‘1) = 𝑥 ↔ (((0[,]1) × {𝑥})‘1) = 𝑥))
117114, 116anbi12d 630 . . . . . . . . 9 (𝑓 = ((0[,]1) × {𝑥}) → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑥) ↔ ((((0[,]1) × {𝑥})‘0) = 𝑥 ∧ (((0[,]1) × {𝑥})‘1) = 𝑥)))
118112, 117rspc2ev 3632 . . . . . . . 8 ((𝑥 𝐽 ∧ ((0[,]1) × {𝑥}) ∈ (II Cn 𝐽) ∧ ((((0[,]1) × {𝑥})‘0) = 𝑥 ∧ (((0[,]1) × {𝑥})‘1) = 𝑥)) → ∃𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
11997, 103, 107, 110, 118syl112anc 1366 . . . . . . 7 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → ∃𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
120 rabn0 4336 . . . . . . 7 ({𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ≠ ∅ ↔ ∃𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
121119, 120sylibr 235 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ≠ ∅)
122 inss2 4203 . . . . . . 7 (𝐽 ∩ (Clsd‘𝐽)) ⊆ (Clsd‘𝐽)
123122, 95sseldi 3962 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ (Clsd‘𝐽))
1243, 4, 96, 121, 123connclo 21951 . . . . 5 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} = 𝐽)
125124eqcomd 2824 . . . 4 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → 𝐽 = {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})
126 rabid2 3379 . . . 4 ( 𝐽 = {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ↔ ∀𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
127125, 126sylib 219 . . 3 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → ∀𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
128127ralrimiva 3179 . 2 ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) → ∀𝑥 𝐽𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
1293ispconn 32367 . 2 (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
1302, 128, 129sylanbrc 583 1 ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) → 𝐽 ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  {crab 3139  cin 3932  wss 3933  c0 4288  𝒫 cpw 4535  {csn 4557   cuni 4830   × cxp 5546  cfv 6348  (class class class)co 7145  0cc0 10525  1c1 10526  [,]cicc 12729  t crest 16682  Topctop 21429  TopOnctopon 21446  Clsdccld 21552   Cn ccn 21760  Conncconn 21947  𝑛-Locally cnlly 22001  IIcii 23410  *𝑝cpco 23531  PConncpconn 32363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-icc 12733  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-nei 21634  df-cn 21763  df-cnp 21764  df-conn 21948  df-nlly 22003  df-tx 22098  df-hmeo 22291  df-xms 22857  df-ms 22858  df-tms 22859  df-ii 23412  df-pco 23536  df-pconn 32365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator