Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cononrel2 Structured version   Visualization version   GIF version

Theorem cononrel2 37379
 Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
cononrel2 (𝐴 ∘ (𝐵𝐵)) = ∅

Proof of Theorem cononrel2
StepHypRef Expression
1 cnvco 5268 . . . 4 (𝐴 ∘ (𝐵𝐵)) = ((𝐵𝐵) ∘ 𝐴)
2 cnvnonrel 37372 . . . . 5 (𝐵𝐵) = ∅
32coeq1i 5241 . . . 4 ((𝐵𝐵) ∘ 𝐴) = (∅ ∘ 𝐴)
4 co01 5609 . . . 4 (∅ ∘ 𝐴) = ∅
51, 3, 43eqtri 2647 . . 3 (𝐴 ∘ (𝐵𝐵)) = ∅
65cnveqi 5257 . 2 (𝐴 ∘ (𝐵𝐵)) =
7 relco 5592 . . 3 Rel (𝐴 ∘ (𝐵𝐵))
8 dfrel2 5542 . . 3 (Rel (𝐴 ∘ (𝐵𝐵)) ↔ (𝐴 ∘ (𝐵𝐵)) = (𝐴 ∘ (𝐵𝐵)))
97, 8mpbi 220 . 2 (𝐴 ∘ (𝐵𝐵)) = (𝐴 ∘ (𝐵𝐵))
10 cnv0 5494 . 2 ∅ = ∅
116, 9, 103eqtr3i 2651 1 (𝐴 ∘ (𝐵𝐵)) = ∅
 Colors of variables: wff setvar class Syntax hints:   = wceq 1480   ∖ cdif 3552  ∅c0 3891  ◡ccnv 5073   ∘ ccom 5078  Rel wrel 5079 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083 This theorem is referenced by:  cnvtrcl0  37411
 Copyright terms: Public domain W3C validator