Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  conss1 Structured version   Visualization version   GIF version

Theorem conss1 38169
Description: Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.)
Assertion
Ref Expression
conss1 ((V ∖ 𝐴) ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ 𝐴)

Proof of Theorem conss1
StepHypRef Expression
1 difcom 4031 1 ((V ∖ 𝐴) ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 196  Vcvv 3190  cdif 3557  wss 3560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator