Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constlimc Structured version   Visualization version   GIF version

Theorem constlimc 39288
Description: Limit of constant function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
constlimc.f 𝐹 = (𝑥𝐴𝐵)
constlimc.a (𝜑𝐴 ⊆ ℂ)
constlimc.b (𝜑𝐵 ∈ ℂ)
constlimc.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
constlimc (𝜑𝐵 ∈ (𝐹 lim 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem constlimc
Dummy variables 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 constlimc.b . 2 (𝜑𝐵 ∈ ℂ)
2 1rp 11788 . . . . 5 1 ∈ ℝ+
32a1i 11 . . . 4 ((𝜑𝑦 ∈ ℝ+) → 1 ∈ ℝ+)
4 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑣𝐴) → 𝑣𝐴)
5 vex 3192 . . . . . . . . . . . . . . . 16 𝑣 ∈ V
6 nfcv 2761 . . . . . . . . . . . . . . . 16 𝑥𝐵
7 csbtt 3529 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ V ∧ 𝑥𝐵) → 𝑣 / 𝑥𝐵 = 𝐵)
85, 6, 7mp2an 707 . . . . . . . . . . . . . . 15 𝑣 / 𝑥𝐵 = 𝐵
98, 1syl5eqel 2702 . . . . . . . . . . . . . 14 (𝜑𝑣 / 𝑥𝐵 ∈ ℂ)
109adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑣𝐴) → 𝑣 / 𝑥𝐵 ∈ ℂ)
11 constlimc.f . . . . . . . . . . . . . 14 𝐹 = (𝑥𝐴𝐵)
1211fvmpts 6247 . . . . . . . . . . . . 13 ((𝑣𝐴𝑣 / 𝑥𝐵 ∈ ℂ) → (𝐹𝑣) = 𝑣 / 𝑥𝐵)
134, 10, 12syl2anc 692 . . . . . . . . . . . 12 ((𝜑𝑣𝐴) → (𝐹𝑣) = 𝑣 / 𝑥𝐵)
1413oveq1d 6625 . . . . . . . . . . 11 ((𝜑𝑣𝐴) → ((𝐹𝑣) − 𝐵) = (𝑣 / 𝑥𝐵𝐵))
158oveq1i 6620 . . . . . . . . . . 11 (𝑣 / 𝑥𝐵𝐵) = (𝐵𝐵)
1614, 15syl6eq 2671 . . . . . . . . . 10 ((𝜑𝑣𝐴) → ((𝐹𝑣) − 𝐵) = (𝐵𝐵))
1716fveq2d 6157 . . . . . . . . 9 ((𝜑𝑣𝐴) → (abs‘((𝐹𝑣) − 𝐵)) = (abs‘(𝐵𝐵)))
181subidd 10332 . . . . . . . . . . 11 (𝜑 → (𝐵𝐵) = 0)
1918fveq2d 6157 . . . . . . . . . 10 (𝜑 → (abs‘(𝐵𝐵)) = (abs‘0))
2019adantr 481 . . . . . . . . 9 ((𝜑𝑣𝐴) → (abs‘(𝐵𝐵)) = (abs‘0))
21 abs0 13967 . . . . . . . . . 10 (abs‘0) = 0
2221a1i 11 . . . . . . . . 9 ((𝜑𝑣𝐴) → (abs‘0) = 0)
2317, 20, 223eqtrd 2659 . . . . . . . 8 ((𝜑𝑣𝐴) → (abs‘((𝐹𝑣) − 𝐵)) = 0)
2423adantlr 750 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑣𝐴) → (abs‘((𝐹𝑣) − 𝐵)) = 0)
25 rpgt0 11796 . . . . . . . 8 (𝑦 ∈ ℝ+ → 0 < 𝑦)
2625ad2antlr 762 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑣𝐴) → 0 < 𝑦)
2724, 26eqbrtrd 4640 . . . . . 6 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑣𝐴) → (abs‘((𝐹𝑣) − 𝐵)) < 𝑦)
2827a1d 25 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑣𝐴) → ((𝑣𝐶 ∧ (abs‘(𝑣𝐶)) < 1) → (abs‘((𝐹𝑣) − 𝐵)) < 𝑦))
2928ralrimiva 2961 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∀𝑣𝐴 ((𝑣𝐶 ∧ (abs‘(𝑣𝐶)) < 1) → (abs‘((𝐹𝑣) − 𝐵)) < 𝑦))
30 breq2 4622 . . . . . . . 8 (𝑤 = 1 → ((abs‘(𝑣𝐶)) < 𝑤 ↔ (abs‘(𝑣𝐶)) < 1))
3130anbi2d 739 . . . . . . 7 (𝑤 = 1 → ((𝑣𝐶 ∧ (abs‘(𝑣𝐶)) < 𝑤) ↔ (𝑣𝐶 ∧ (abs‘(𝑣𝐶)) < 1)))
3231imbi1d 331 . . . . . 6 (𝑤 = 1 → (((𝑣𝐶 ∧ (abs‘(𝑣𝐶)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐵)) < 𝑦) ↔ ((𝑣𝐶 ∧ (abs‘(𝑣𝐶)) < 1) → (abs‘((𝐹𝑣) − 𝐵)) < 𝑦)))
3332ralbidv 2981 . . . . 5 (𝑤 = 1 → (∀𝑣𝐴 ((𝑣𝐶 ∧ (abs‘(𝑣𝐶)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐵)) < 𝑦) ↔ ∀𝑣𝐴 ((𝑣𝐶 ∧ (abs‘(𝑣𝐶)) < 1) → (abs‘((𝐹𝑣) − 𝐵)) < 𝑦)))
3433rspcev 3298 . . . 4 ((1 ∈ ℝ+ ∧ ∀𝑣𝐴 ((𝑣𝐶 ∧ (abs‘(𝑣𝐶)) < 1) → (abs‘((𝐹𝑣) − 𝐵)) < 𝑦)) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐶 ∧ (abs‘(𝑣𝐶)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐵)) < 𝑦))
353, 29, 34syl2anc 692 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐶 ∧ (abs‘(𝑣𝐶)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐵)) < 𝑦))
3635ralrimiva 2961 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐶 ∧ (abs‘(𝑣𝐶)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐵)) < 𝑦))
371adantr 481 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
3837, 11fmptd 6346 . . 3 (𝜑𝐹:𝐴⟶ℂ)
39 constlimc.a . . 3 (𝜑𝐴 ⊆ ℂ)
40 constlimc.c . . 3 (𝜑𝐶 ∈ ℂ)
4138, 39, 40ellimc3 23566 . 2 (𝜑 → (𝐵 ∈ (𝐹 lim 𝐶) ↔ (𝐵 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐶 ∧ (abs‘(𝑣𝐶)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐵)) < 𝑦))))
421, 36, 41mpbir2and 956 1 (𝜑𝐵 ∈ (𝐹 lim 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wnfc 2748  wne 2790  wral 2907  wrex 2908  Vcvv 3189  csb 3518  wss 3559   class class class wbr 4618  cmpt 4678  cfv 5852  (class class class)co 6610  cc 9886  0cc0 9888  1c1 9889   < clt 10026  cmin 10218  +crp 11784  abscabs 13916   lim climc 23549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fi 8269  df-sup 8300  df-inf 8301  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-fz 12277  df-seq 12750  df-exp 12809  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-plusg 15886  df-mulr 15887  df-starv 15888  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-rest 16015  df-topn 16016  df-topgen 16036  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cnp 20955  df-xms 22048  df-ms 22049  df-limc 23553
This theorem is referenced by:  reclimc  39317  fourierdlem53  39709  fourierdlem60  39716  fourierdlem61  39717  fourierdlem73  39729  fourierdlem74  39730  fourierdlem75  39731  fourierdlem76  39732  fouriersw  39781
  Copyright terms: Public domain W3C validator