MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprmgcdb Structured version   Visualization version   GIF version

Theorem coprmgcdb 15076
Description: Two positive integers are coprime, i.e. the only positive integer that divides both of them is 1, iff their greatest common divisor is 1. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
coprmgcdb ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖

Proof of Theorem coprmgcdb
StepHypRef Expression
1 nnz 11140 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
2 nnz 11140 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
3 gcddvds 14936 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
41, 2, 3syl2an 492 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
5 simpr 475 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
6 gcdnncl 14940 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
76adantr 479 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → (𝐴 gcd 𝐵) ∈ ℕ)
8 breq1 4484 . . . . . . . 8 (𝑖 = (𝐴 gcd 𝐵) → (𝑖𝐴 ↔ (𝐴 gcd 𝐵) ∥ 𝐴))
9 breq1 4484 . . . . . . . 8 (𝑖 = (𝐴 gcd 𝐵) → (𝑖𝐵 ↔ (𝐴 gcd 𝐵) ∥ 𝐵))
108, 9anbi12d 742 . . . . . . 7 (𝑖 = (𝐴 gcd 𝐵) → ((𝑖𝐴𝑖𝐵) ↔ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)))
11 eqeq1 2518 . . . . . . 7 (𝑖 = (𝐴 gcd 𝐵) → (𝑖 = 1 ↔ (𝐴 gcd 𝐵) = 1))
1210, 11imbi12d 332 . . . . . 6 (𝑖 = (𝐴 gcd 𝐵) → (((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → (𝐴 gcd 𝐵) = 1)))
1312rspcv 3182 . . . . 5 ((𝐴 gcd 𝐵) ∈ ℕ → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → (𝐴 gcd 𝐵) = 1)))
147, 13syl 17 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → (𝐴 gcd 𝐵) = 1)))
155, 14mpid 42 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → (𝐴 gcd 𝐵) = 1))
164, 15mpdan 698 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → (𝐴 gcd 𝐵) = 1))
17 simpl 471 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ))
1817anim1i 589 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ ℕ))
1918ancomd 465 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → (𝑖 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ)))
20 3anass 1034 . . . . . . 7 ((𝑖 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ↔ (𝑖 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ)))
2119, 20sylibr 222 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → (𝑖 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ))
22 nndvdslegcd 14938 . . . . . 6 ((𝑖 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖𝐴𝑖𝐵) → 𝑖 ≤ (𝐴 gcd 𝐵)))
2321, 22syl 17 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → ((𝑖𝐴𝑖𝐵) → 𝑖 ≤ (𝐴 gcd 𝐵)))
24 breq2 4485 . . . . . . . 8 ((𝐴 gcd 𝐵) = 1 → (𝑖 ≤ (𝐴 gcd 𝐵) ↔ 𝑖 ≤ 1))
2524adantr 479 . . . . . . 7 (((𝐴 gcd 𝐵) = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ≤ (𝐴 gcd 𝐵) ↔ 𝑖 ≤ 1))
26 nnge1 10801 . . . . . . . . 9 (𝑖 ∈ ℕ → 1 ≤ 𝑖)
27 nnre 10782 . . . . . . . . . . 11 (𝑖 ∈ ℕ → 𝑖 ∈ ℝ)
28 1red 9810 . . . . . . . . . . 11 (𝑖 ∈ ℕ → 1 ∈ ℝ)
2927, 28letri3d 9930 . . . . . . . . . 10 (𝑖 ∈ ℕ → (𝑖 = 1 ↔ (𝑖 ≤ 1 ∧ 1 ≤ 𝑖)))
3029biimprd 236 . . . . . . . . 9 (𝑖 ∈ ℕ → ((𝑖 ≤ 1 ∧ 1 ≤ 𝑖) → 𝑖 = 1))
3126, 30mpan2d 705 . . . . . . . 8 (𝑖 ∈ ℕ → (𝑖 ≤ 1 → 𝑖 = 1))
3231adantl 480 . . . . . . 7 (((𝐴 gcd 𝐵) = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ≤ 1 → 𝑖 = 1))
3325, 32sylbid 228 . . . . . 6 (((𝐴 gcd 𝐵) = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ≤ (𝐴 gcd 𝐵) → 𝑖 = 1))
3433adantll 745 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → (𝑖 ≤ (𝐴 gcd 𝐵) → 𝑖 = 1))
3523, 34syld 45 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → ((𝑖𝐴𝑖𝐵) → 𝑖 = 1))
3635ralrimiva 2853 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1))
3736ex 448 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1)))
3816, 37impbid 200 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1938  wral 2800   class class class wbr 4481  (class class class)co 6426  1c1 9692  cle 9830  cn 10775  cz 11118  cdvds 14690   gcd cgcd 14927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-cnex 9747  ax-resscn 9748  ax-1cn 9749  ax-icn 9750  ax-addcl 9751  ax-addrcl 9752  ax-mulcl 9753  ax-mulrcl 9754  ax-mulcom 9755  ax-addass 9756  ax-mulass 9757  ax-distr 9758  ax-i2m1 9759  ax-1ne0 9760  ax-1rid 9761  ax-rnegex 9762  ax-rrecex 9763  ax-cnre 9764  ax-pre-lttri 9765  ax-pre-lttrn 9766  ax-pre-ltadd 9767  ax-pre-mulgt0 9768  ax-pre-sup 9769
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6388  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-om 6834  df-2nd 6935  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-er 7505  df-en 7718  df-dom 7719  df-sdom 7720  df-sup 8107  df-inf 8108  df-pnf 9831  df-mnf 9832  df-xr 9833  df-ltxr 9834  df-le 9835  df-sub 10019  df-neg 10020  df-div 10434  df-nn 10776  df-2 10834  df-3 10835  df-n0 11048  df-z 11119  df-uz 11428  df-rp 11575  df-seq 12532  df-exp 12591  df-cj 13546  df-re 13547  df-im 13548  df-sqrt 13682  df-abs 13683  df-dvds 14691  df-gcd 14928
This theorem is referenced by:  ncoprmgcdne1b  15077  coprmdvds1  15079
  Copyright terms: Public domain W3C validator