Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  corcltrcl Structured version   Visualization version   GIF version

Theorem corcltrcl 40077
Description: The composition of the reflexive and transitive closures is the reflexive-transitive closure. (Contributed by RP, 17-Jun-2020.)
Assertion
Ref Expression
corcltrcl (r* ∘ t+) = t*

Proof of Theorem corcltrcl
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrcl4 40014 . 2 r* = (𝑎 ∈ V ↦ 𝑖 ∈ {0, 1} (𝑎𝑟𝑖))
2 dftrcl3 40058 . 2 t+ = (𝑏 ∈ V ↦ 𝑗 ∈ ℕ (𝑏𝑟𝑗))
3 dfrtrcl3 40071 . 2 t* = (𝑐 ∈ V ↦ 𝑘 ∈ ℕ0 (𝑐𝑟𝑘))
4 prex 5325 . 2 {0, 1} ∈ V
5 nnex 11638 . 2 ℕ ∈ V
6 df-n0 11892 . . 3 0 = (ℕ ∪ {0})
7 uncom 4129 . . 3 (ℕ ∪ {0}) = ({0} ∪ ℕ)
8 df-pr 4564 . . . . 5 {0, 1} = ({0} ∪ {1})
98uneq1i 4135 . . . 4 ({0, 1} ∪ ℕ) = (({0} ∪ {1}) ∪ ℕ)
10 unass 4142 . . . 4 (({0} ∪ {1}) ∪ ℕ) = ({0} ∪ ({1} ∪ ℕ))
11 1nn 11643 . . . . . . 7 1 ∈ ℕ
12 snssi 4735 . . . . . . 7 (1 ∈ ℕ → {1} ⊆ ℕ)
1311, 12ax-mp 5 . . . . . 6 {1} ⊆ ℕ
14 ssequn1 4156 . . . . . 6 ({1} ⊆ ℕ ↔ ({1} ∪ ℕ) = ℕ)
1513, 14mpbi 232 . . . . 5 ({1} ∪ ℕ) = ℕ
1615uneq2i 4136 . . . 4 ({0} ∪ ({1} ∪ ℕ)) = ({0} ∪ ℕ)
179, 10, 163eqtrri 2849 . . 3 ({0} ∪ ℕ) = ({0, 1} ∪ ℕ)
186, 7, 173eqtri 2848 . 2 0 = ({0, 1} ∪ ℕ)
19 oveq2 7158 . . . 4 (𝑘 = 𝑖 → (𝑑𝑟𝑘) = (𝑑𝑟𝑖))
2019cbviunv 4958 . . 3 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) = 𝑖 ∈ {0, 1} (𝑑𝑟𝑖)
21 ss2iun 4930 . . . 4 (∀𝑖 ∈ {0, 1} (𝑑𝑟𝑖) ⊆ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) → 𝑖 ∈ {0, 1} (𝑑𝑟𝑖) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
22 relexp1g 14379 . . . . . . . 8 (𝑑 ∈ V → (𝑑𝑟1) = 𝑑)
2322elv 3500 . . . . . . 7 (𝑑𝑟1) = 𝑑
24 oveq2 7158 . . . . . . . . 9 (𝑗 = 1 → (𝑑𝑟𝑗) = (𝑑𝑟1))
2524ssiun2s 4965 . . . . . . . 8 (1 ∈ ℕ → (𝑑𝑟1) ⊆ 𝑗 ∈ ℕ (𝑑𝑟𝑗))
2611, 25ax-mp 5 . . . . . . 7 (𝑑𝑟1) ⊆ 𝑗 ∈ ℕ (𝑑𝑟𝑗)
2723, 26eqsstrri 4002 . . . . . 6 𝑑 𝑗 ∈ ℕ (𝑑𝑟𝑗)
2827a1i 11 . . . . 5 (𝑖 ∈ {0, 1} → 𝑑 𝑗 ∈ ℕ (𝑑𝑟𝑗))
29 ovex 7183 . . . . . . 7 (𝑑𝑟𝑗) ∈ V
305, 29iunex 7663 . . . . . 6 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V
3130a1i 11 . . . . 5 (𝑖 ∈ {0, 1} → 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V)
32 0nn0 11906 . . . . . . 7 0 ∈ ℕ0
33 1nn0 11907 . . . . . . 7 1 ∈ ℕ0
34 prssi 4748 . . . . . . 7 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1} ⊆ ℕ0)
3532, 33, 34mp2an 690 . . . . . 6 {0, 1} ⊆ ℕ0
3635sseli 3963 . . . . 5 (𝑖 ∈ {0, 1} → 𝑖 ∈ ℕ0)
3728, 31, 36relexpss1d 40043 . . . 4 (𝑖 ∈ {0, 1} → (𝑑𝑟𝑖) ⊆ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
3821, 37mprg 3152 . . 3 𝑖 ∈ {0, 1} (𝑑𝑟𝑖) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
3920, 38eqsstri 4001 . 2 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
40 oveq2 7158 . . . . 5 (𝑘 = 𝑗 → (𝑑𝑟𝑘) = (𝑑𝑟𝑗))
4140cbviunv 4958 . . . 4 𝑘 ∈ ℕ (𝑑𝑟𝑘) = 𝑗 ∈ ℕ (𝑑𝑟𝑗)
42 relexp1g 14379 . . . . 5 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝑑𝑟𝑗))
4330, 42ax-mp 5 . . . 4 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝑑𝑟𝑗)
4441, 43eqtr4i 2847 . . 3 𝑘 ∈ ℕ (𝑑𝑟𝑘) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1)
45 1ex 10631 . . . . 5 1 ∈ V
4645prid2 4693 . . . 4 1 ∈ {0, 1}
47 oveq2 7158 . . . . 5 (𝑖 = 1 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1))
4847ssiun2s 4965 . . . 4 (1 ∈ {0, 1} → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
4946, 48ax-mp 5 . . 3 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
5044, 49eqsstri 4001 . 2 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
51 c0ex 10629 . . . . . 6 0 ∈ V
5251prid1 4692 . . . . 5 0 ∈ {0, 1}
53 oveq2 7158 . . . . . 6 (𝑘 = 0 → (𝑑𝑟𝑘) = (𝑑𝑟0))
5453ssiun2s 4965 . . . . 5 (0 ∈ {0, 1} → (𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘))
5552, 54ax-mp 5 . . . 4 (𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
56 ssid 3989 . . . 4 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
57 unss12 4158 . . . 4 (((𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∧ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → ((𝑑𝑟0) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) ⊆ ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
5855, 56, 57mp2an 690 . . 3 ((𝑑𝑟0) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) ⊆ ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
59 iuneq1 4928 . . . . 5 ({0, 1} = ({0} ∪ {1}) → 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
608, 59ax-mp 5 . . . 4 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
61 iunxun 5009 . . . 4 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑖 ∈ {0} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ∪ 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
62 oveq2 7158 . . . . . . 7 (𝑖 = 0 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟0))
6351, 62iunxsn 5006 . . . . . 6 𝑖 ∈ {0} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟0)
64 vex 3498 . . . . . . 7 𝑑 ∈ V
65 nnssnn0 11894 . . . . . . 7 ℕ ⊆ ℕ0
66 inelcm 4414 . . . . . . . 8 ((1 ∈ {0, 1} ∧ 1 ∈ ℕ) → ({0, 1} ∩ ℕ) ≠ ∅)
6746, 11, 66mp2an 690 . . . . . . 7 ({0, 1} ∩ ℕ) ≠ ∅
68 iunrelexp0 40040 . . . . . . 7 ((𝑑 ∈ V ∧ ℕ ⊆ ℕ0 ∧ ({0, 1} ∩ ℕ) ≠ ∅) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟0) = (𝑑𝑟0))
6964, 65, 67, 68mp3an 1457 . . . . . 6 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟0) = (𝑑𝑟0)
7063, 69eqtri 2844 . . . . 5 𝑖 ∈ {0} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = (𝑑𝑟0)
7145, 47iunxsn 5006 . . . . . 6 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1)
7243, 41eqtr4i 2847 . . . . . 6 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
7371, 72eqtri 2844 . . . . 5 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
7470, 73uneq12i 4137 . . . 4 ( 𝑖 ∈ {0} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ∪ 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)) = ((𝑑𝑟0) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
7560, 61, 743eqtri 2848 . . 3 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ((𝑑𝑟0) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
76 iunxun 5009 . . 3 𝑘 ∈ ({0, 1} ∪ ℕ)(𝑑𝑟𝑘) = ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
7758, 75, 763sstr4i 4010 . 2 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ({0, 1} ∪ ℕ)(𝑑𝑟𝑘)
781, 2, 3, 4, 5, 18, 39, 50, 77comptiunov2i 40044 1 (r* ∘ t+) = t*
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2110  wne 3016  Vcvv 3495  cun 3934  cin 3935  wss 3936  c0 4291  {csn 4561  {cpr 4563   ciun 4912  ccom 5554  (class class class)co 7150  0cc0 10531  1c1 10532  cn 11632  0cn0 11891  t+ctcl 14339  t*crtcl 14340  𝑟crelexp 14373  r*crcl 40010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-seq 13364  df-trcl 14341  df-rtrcl 14342  df-relexp 14374  df-rcl 40011
This theorem is referenced by:  cortrcltrcl  40078  corclrtrcl  40079
  Copyright terms: Public domain W3C validator