![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cortrclrtrcl | Structured version Visualization version GIF version |
Description: The reflexive-transitive closure is idempotent. (Contributed by RP, 13-Jun-2020.) |
Ref | Expression |
---|---|
cortrclrtrcl | ⊢ (t* ∘ t*) = t* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cotrclrcl 38534 | . . . 4 ⊢ (t+ ∘ r*) = t* | |
2 | 1 | eqcomi 2767 | . . 3 ⊢ t* = (t+ ∘ r*) |
3 | 2 | coeq1i 5435 | . 2 ⊢ (t* ∘ t*) = ((t+ ∘ r*) ∘ t*) |
4 | coass 5813 | . . 3 ⊢ ((t+ ∘ r*) ∘ t*) = (t+ ∘ (r* ∘ t*)) | |
5 | corclrtrcl 38533 | . . . . 5 ⊢ (r* ∘ t*) = t* | |
6 | 5 | coeq2i 5436 | . . . 4 ⊢ (t+ ∘ (r* ∘ t*)) = (t+ ∘ t*) |
7 | cotrclrtrcl 38536 | . . . 4 ⊢ (t+ ∘ t*) = t* | |
8 | 6, 7 | eqtri 2780 | . . 3 ⊢ (t+ ∘ (r* ∘ t*)) = t* |
9 | 4, 8 | eqtri 2780 | . 2 ⊢ ((t+ ∘ r*) ∘ t*) = t* |
10 | 3, 9 | eqtri 2780 | 1 ⊢ (t* ∘ t*) = t* |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 ∘ ccom 5268 t+ctcl 13923 t*crtcl 13924 r*crcl 38464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-rep 4921 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-cnex 10182 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-int 4626 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-om 7229 df-2nd 7332 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-er 7909 df-en 8120 df-dom 8121 df-sdom 8122 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 df-nn 11211 df-2 11269 df-n0 11483 df-z 11568 df-uz 11878 df-seq 12994 df-trcl 13925 df-rtrcl 13926 df-relexp 13958 df-rcl 38465 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |