![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cos2tsin | Structured version Visualization version GIF version |
Description: Double-angle formula for cosine in terms of sine. (Contributed by NM, 12-Sep-2008.) |
Ref | Expression |
---|---|
cos2tsin | ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (1 − (2 · ((sin‘𝐴)↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cos2t 15107 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = ((2 · ((cos‘𝐴)↑2)) − 1)) | |
2 | sincl 15055 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
3 | 2 | sqcld 13200 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ) |
4 | coscl 15056 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
5 | 4 | sqcld 13200 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ) |
6 | 2cn 11283 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
7 | adddi 10217 | . . . . . . . 8 ⊢ ((2 ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ) → (2 · (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) = ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2)))) | |
8 | 6, 7 | mp3an1 1560 | . . . . . . 7 ⊢ ((((sin‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ) → (2 · (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) = ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2)))) |
9 | 3, 5, 8 | syl2anc 696 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (2 · (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) = ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2)))) |
10 | sincossq 15105 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | |
11 | 10 | oveq2d 6829 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (2 · (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) = (2 · 1)) |
12 | 9, 11 | eqtr3d 2796 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2))) = (2 · 1)) |
13 | 2t1e2 11368 | . . . . 5 ⊢ (2 · 1) = 2 | |
14 | 12, 13 | syl6eq 2810 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2))) = 2) |
15 | mulcl 10212 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ) → (2 · ((sin‘𝐴)↑2)) ∈ ℂ) | |
16 | 6, 3, 15 | sylancr 698 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (2 · ((sin‘𝐴)↑2)) ∈ ℂ) |
17 | mulcl 10212 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ) → (2 · ((cos‘𝐴)↑2)) ∈ ℂ) | |
18 | 6, 5, 17 | sylancr 698 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (2 · ((cos‘𝐴)↑2)) ∈ ℂ) |
19 | subadd 10476 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ (2 · ((sin‘𝐴)↑2)) ∈ ℂ ∧ (2 · ((cos‘𝐴)↑2)) ∈ ℂ) → ((2 − (2 · ((sin‘𝐴)↑2))) = (2 · ((cos‘𝐴)↑2)) ↔ ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2))) = 2)) | |
20 | 6, 19 | mp3an1 1560 | . . . . 5 ⊢ (((2 · ((sin‘𝐴)↑2)) ∈ ℂ ∧ (2 · ((cos‘𝐴)↑2)) ∈ ℂ) → ((2 − (2 · ((sin‘𝐴)↑2))) = (2 · ((cos‘𝐴)↑2)) ↔ ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2))) = 2)) |
21 | 16, 18, 20 | syl2anc 696 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((2 − (2 · ((sin‘𝐴)↑2))) = (2 · ((cos‘𝐴)↑2)) ↔ ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2))) = 2)) |
22 | 14, 21 | mpbird 247 | . . 3 ⊢ (𝐴 ∈ ℂ → (2 − (2 · ((sin‘𝐴)↑2))) = (2 · ((cos‘𝐴)↑2))) |
23 | 22 | oveq1d 6828 | . 2 ⊢ (𝐴 ∈ ℂ → ((2 − (2 · ((sin‘𝐴)↑2))) − 1) = ((2 · ((cos‘𝐴)↑2)) − 1)) |
24 | ax-1cn 10186 | . . . . 5 ⊢ 1 ∈ ℂ | |
25 | sub32 10507 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ (2 · ((sin‘𝐴)↑2)) ∈ ℂ ∧ 1 ∈ ℂ) → ((2 − (2 · ((sin‘𝐴)↑2))) − 1) = ((2 − 1) − (2 · ((sin‘𝐴)↑2)))) | |
26 | 6, 24, 25 | mp3an13 1564 | . . . 4 ⊢ ((2 · ((sin‘𝐴)↑2)) ∈ ℂ → ((2 − (2 · ((sin‘𝐴)↑2))) − 1) = ((2 − 1) − (2 · ((sin‘𝐴)↑2)))) |
27 | 16, 26 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℂ → ((2 − (2 · ((sin‘𝐴)↑2))) − 1) = ((2 − 1) − (2 · ((sin‘𝐴)↑2)))) |
28 | 2m1e1 11327 | . . . 4 ⊢ (2 − 1) = 1 | |
29 | 28 | oveq1i 6823 | . . 3 ⊢ ((2 − 1) − (2 · ((sin‘𝐴)↑2))) = (1 − (2 · ((sin‘𝐴)↑2))) |
30 | 27, 29 | syl6eq 2810 | . 2 ⊢ (𝐴 ∈ ℂ → ((2 − (2 · ((sin‘𝐴)↑2))) − 1) = (1 − (2 · ((sin‘𝐴)↑2)))) |
31 | 1, 23, 30 | 3eqtr2d 2800 | 1 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (1 − (2 · ((sin‘𝐴)↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6813 ℂcc 10126 1c1 10129 + caddc 10131 · cmul 10133 − cmin 10458 2c2 11262 ↑cexp 13054 sincsin 14993 cosccos 14994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 ax-addf 10207 ax-mulf 10208 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-pm 8026 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-sup 8513 df-inf 8514 df-oi 8580 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-n0 11485 df-z 11570 df-uz 11880 df-rp 12026 df-ico 12374 df-fz 12520 df-fzo 12660 df-fl 12787 df-seq 12996 df-exp 13055 df-fac 13255 df-bc 13284 df-hash 13312 df-shft 14006 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-limsup 14401 df-clim 14418 df-rlim 14419 df-sum 14616 df-ef 14997 df-sin 14999 df-cos 15000 |
This theorem is referenced by: coseq1 24473 |
Copyright terms: Public domain | W3C validator |