MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosargd Structured version   Visualization version   GIF version

Theorem cosargd 25185
Description: The cosine of the argument is the quotient of the real part and the absolute value. Compare to efiarg 25184. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
cosargd.1 (𝜑𝑋 ∈ ℂ)
cosargd.2 (𝜑𝑋 ≠ 0)
Assertion
Ref Expression
cosargd (𝜑 → (cos‘(ℑ‘(log‘𝑋))) = ((ℜ‘𝑋) / (abs‘𝑋)))

Proof of Theorem cosargd
StepHypRef Expression
1 cosargd.1 . . . 4 (𝜑𝑋 ∈ ℂ)
21cjcld 14549 . . . 4 (𝜑 → (∗‘𝑋) ∈ ℂ)
31, 2addcld 10654 . . 3 (𝜑 → (𝑋 + (∗‘𝑋)) ∈ ℂ)
41abscld 14790 . . . 4 (𝜑 → (abs‘𝑋) ∈ ℝ)
54recnd 10663 . . 3 (𝜑 → (abs‘𝑋) ∈ ℂ)
6 2cnd 11709 . . 3 (𝜑 → 2 ∈ ℂ)
7 cosargd.2 . . . 4 (𝜑𝑋 ≠ 0)
81, 7absne0d 14801 . . 3 (𝜑 → (abs‘𝑋) ≠ 0)
9 2ne0 11735 . . . 4 2 ≠ 0
109a1i 11 . . 3 (𝜑 → 2 ≠ 0)
113, 5, 6, 8, 10divdiv32d 11435 . 2 (𝜑 → (((𝑋 + (∗‘𝑋)) / (abs‘𝑋)) / 2) = (((𝑋 + (∗‘𝑋)) / 2) / (abs‘𝑋)))
121, 7logcld 25148 . . . . . 6 (𝜑 → (log‘𝑋) ∈ ℂ)
1312imcld 14548 . . . . 5 (𝜑 → (ℑ‘(log‘𝑋)) ∈ ℝ)
1413recnd 10663 . . . 4 (𝜑 → (ℑ‘(log‘𝑋)) ∈ ℂ)
15 cosval 15470 . . . 4 ((ℑ‘(log‘𝑋)) ∈ ℂ → (cos‘(ℑ‘(log‘𝑋))) = (((exp‘(i · (ℑ‘(log‘𝑋)))) + (exp‘(-i · (ℑ‘(log‘𝑋))))) / 2))
1614, 15syl 17 . . 3 (𝜑 → (cos‘(ℑ‘(log‘𝑋))) = (((exp‘(i · (ℑ‘(log‘𝑋)))) + (exp‘(-i · (ℑ‘(log‘𝑋))))) / 2))
17 efiarg 25184 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝑋)))) = (𝑋 / (abs‘𝑋)))
181, 7, 17syl2anc 586 . . . . . 6 (𝜑 → (exp‘(i · (ℑ‘(log‘𝑋)))) = (𝑋 / (abs‘𝑋)))
19 ax-icn 10590 . . . . . . . . . . 11 i ∈ ℂ
2019a1i 11 . . . . . . . . . 10 (𝜑 → i ∈ ℂ)
2120, 14mulcld 10655 . . . . . . . . 9 (𝜑 → (i · (ℑ‘(log‘𝑋))) ∈ ℂ)
22 efcj 15439 . . . . . . . . 9 ((i · (ℑ‘(log‘𝑋))) ∈ ℂ → (exp‘(∗‘(i · (ℑ‘(log‘𝑋))))) = (∗‘(exp‘(i · (ℑ‘(log‘𝑋))))))
2321, 22syl 17 . . . . . . . 8 (𝜑 → (exp‘(∗‘(i · (ℑ‘(log‘𝑋))))) = (∗‘(exp‘(i · (ℑ‘(log‘𝑋))))))
2420, 14cjmuld 14574 . . . . . . . . . 10 (𝜑 → (∗‘(i · (ℑ‘(log‘𝑋)))) = ((∗‘i) · (∗‘(ℑ‘(log‘𝑋)))))
25 cji 14512 . . . . . . . . . . . 12 (∗‘i) = -i
2625a1i 11 . . . . . . . . . . 11 (𝜑 → (∗‘i) = -i)
2713cjred 14579 . . . . . . . . . . 11 (𝜑 → (∗‘(ℑ‘(log‘𝑋))) = (ℑ‘(log‘𝑋)))
2826, 27oveq12d 7168 . . . . . . . . . 10 (𝜑 → ((∗‘i) · (∗‘(ℑ‘(log‘𝑋)))) = (-i · (ℑ‘(log‘𝑋))))
2924, 28eqtrd 2856 . . . . . . . . 9 (𝜑 → (∗‘(i · (ℑ‘(log‘𝑋)))) = (-i · (ℑ‘(log‘𝑋))))
3029fveq2d 6668 . . . . . . . 8 (𝜑 → (exp‘(∗‘(i · (ℑ‘(log‘𝑋))))) = (exp‘(-i · (ℑ‘(log‘𝑋)))))
3118fveq2d 6668 . . . . . . . 8 (𝜑 → (∗‘(exp‘(i · (ℑ‘(log‘𝑋))))) = (∗‘(𝑋 / (abs‘𝑋))))
3223, 30, 313eqtr3d 2864 . . . . . . 7 (𝜑 → (exp‘(-i · (ℑ‘(log‘𝑋)))) = (∗‘(𝑋 / (abs‘𝑋))))
331, 5, 8cjdivd 14576 . . . . . . 7 (𝜑 → (∗‘(𝑋 / (abs‘𝑋))) = ((∗‘𝑋) / (∗‘(abs‘𝑋))))
344cjred 14579 . . . . . . . 8 (𝜑 → (∗‘(abs‘𝑋)) = (abs‘𝑋))
3534oveq2d 7166 . . . . . . 7 (𝜑 → ((∗‘𝑋) / (∗‘(abs‘𝑋))) = ((∗‘𝑋) / (abs‘𝑋)))
3632, 33, 353eqtrd 2860 . . . . . 6 (𝜑 → (exp‘(-i · (ℑ‘(log‘𝑋)))) = ((∗‘𝑋) / (abs‘𝑋)))
3718, 36oveq12d 7168 . . . . 5 (𝜑 → ((exp‘(i · (ℑ‘(log‘𝑋)))) + (exp‘(-i · (ℑ‘(log‘𝑋))))) = ((𝑋 / (abs‘𝑋)) + ((∗‘𝑋) / (abs‘𝑋))))
381, 2, 5, 8divdird 11448 . . . . 5 (𝜑 → ((𝑋 + (∗‘𝑋)) / (abs‘𝑋)) = ((𝑋 / (abs‘𝑋)) + ((∗‘𝑋) / (abs‘𝑋))))
3937, 38eqtr4d 2859 . . . 4 (𝜑 → ((exp‘(i · (ℑ‘(log‘𝑋)))) + (exp‘(-i · (ℑ‘(log‘𝑋))))) = ((𝑋 + (∗‘𝑋)) / (abs‘𝑋)))
4039oveq1d 7165 . . 3 (𝜑 → (((exp‘(i · (ℑ‘(log‘𝑋)))) + (exp‘(-i · (ℑ‘(log‘𝑋))))) / 2) = (((𝑋 + (∗‘𝑋)) / (abs‘𝑋)) / 2))
4116, 40eqtrd 2856 . 2 (𝜑 → (cos‘(ℑ‘(log‘𝑋))) = (((𝑋 + (∗‘𝑋)) / (abs‘𝑋)) / 2))
42 reval 14459 . . . 4 (𝑋 ∈ ℂ → (ℜ‘𝑋) = ((𝑋 + (∗‘𝑋)) / 2))
431, 42syl 17 . . 3 (𝜑 → (ℜ‘𝑋) = ((𝑋 + (∗‘𝑋)) / 2))
4443oveq1d 7165 . 2 (𝜑 → ((ℜ‘𝑋) / (abs‘𝑋)) = (((𝑋 + (∗‘𝑋)) / 2) / (abs‘𝑋)))
4511, 41, 443eqtr4d 2866 1 (𝜑 → (cos‘(ℑ‘(log‘𝑋))) = ((ℜ‘𝑋) / (abs‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  wne 3016  cfv 6349  (class class class)co 7150  cc 10529  0cc0 10531  ici 10533   + caddc 10534   · cmul 10536  -cneg 10865   / cdiv 11291  2c2 11686  ccj 14449  cre 14450  cim 14451  abscabs 14587  expce 15409  cosccos 15412  logclog 25132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-sin 15417  df-cos 15418  df-pi 15420  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-limc 24458  df-dv 24459  df-log 25134
This theorem is referenced by:  cosarg0d  25186  cosangneg2d  25379
  Copyright terms: Public domain W3C validator