MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosatan Structured version   Visualization version   GIF version

Theorem cosatan 24555
Description: The cosine of an arctangent. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
cosatan (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) = (1 / (√‘(1 + (𝐴↑2)))))

Proof of Theorem cosatan
StepHypRef Expression
1 atancl 24515 . . 3 (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ)
2 cosval 14781 . . 3 ((arctan‘𝐴) ∈ ℂ → (cos‘(arctan‘𝐴)) = (((exp‘(i · (arctan‘𝐴))) + (exp‘(-i · (arctan‘𝐴)))) / 2))
31, 2syl 17 . 2 (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) = (((exp‘(i · (arctan‘𝐴))) + (exp‘(-i · (arctan‘𝐴)))) / 2))
4 efiatan2 24551 . . . . 5 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
5 ax-icn 9942 . . . . . . . . 9 i ∈ ℂ
6 mulneg12 10415 . . . . . . . . 9 ((i ∈ ℂ ∧ (arctan‘𝐴) ∈ ℂ) → (-i · (arctan‘𝐴)) = (i · -(arctan‘𝐴)))
75, 1, 6sylancr 694 . . . . . . . 8 (𝐴 ∈ dom arctan → (-i · (arctan‘𝐴)) = (i · -(arctan‘𝐴)))
8 atanneg 24541 . . . . . . . . 9 (𝐴 ∈ dom arctan → (arctan‘-𝐴) = -(arctan‘𝐴))
98oveq2d 6623 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · (arctan‘-𝐴)) = (i · -(arctan‘𝐴)))
107, 9eqtr4d 2658 . . . . . . 7 (𝐴 ∈ dom arctan → (-i · (arctan‘𝐴)) = (i · (arctan‘-𝐴)))
1110fveq2d 6154 . . . . . 6 (𝐴 ∈ dom arctan → (exp‘(-i · (arctan‘𝐴))) = (exp‘(i · (arctan‘-𝐴))))
12 atandmneg 24540 . . . . . . 7 (𝐴 ∈ dom arctan → -𝐴 ∈ dom arctan)
13 efiatan2 24551 . . . . . . 7 (-𝐴 ∈ dom arctan → (exp‘(i · (arctan‘-𝐴))) = ((1 + (i · -𝐴)) / (√‘(1 + (-𝐴↑2)))))
1412, 13syl 17 . . . . . 6 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘-𝐴))) = ((1 + (i · -𝐴)) / (√‘(1 + (-𝐴↑2)))))
15 atandm4 24513 . . . . . . . . . . 11 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ≠ 0))
1615simplbi 476 . . . . . . . . . 10 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
17 mulneg2 10414 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
185, 16, 17sylancr 694 . . . . . . . . 9 (𝐴 ∈ dom arctan → (i · -𝐴) = -(i · 𝐴))
1918oveq2d 6623 . . . . . . . 8 (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 + -(i · 𝐴)))
20 ax-1cn 9941 . . . . . . . . 9 1 ∈ ℂ
21 mulcl 9967 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
225, 16, 21sylancr 694 . . . . . . . . 9 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
23 negsub 10276 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + -(i · 𝐴)) = (1 − (i · 𝐴)))
2420, 22, 23sylancr 694 . . . . . . . 8 (𝐴 ∈ dom arctan → (1 + -(i · 𝐴)) = (1 − (i · 𝐴)))
2519, 24eqtrd 2655 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 − (i · 𝐴)))
26 sqneg 12866 . . . . . . . . . 10 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
2716, 26syl 17 . . . . . . . . 9 (𝐴 ∈ dom arctan → (-𝐴↑2) = (𝐴↑2))
2827oveq2d 6623 . . . . . . . 8 (𝐴 ∈ dom arctan → (1 + (-𝐴↑2)) = (1 + (𝐴↑2)))
2928fveq2d 6154 . . . . . . 7 (𝐴 ∈ dom arctan → (√‘(1 + (-𝐴↑2))) = (√‘(1 + (𝐴↑2))))
3025, 29oveq12d 6625 . . . . . 6 (𝐴 ∈ dom arctan → ((1 + (i · -𝐴)) / (√‘(1 + (-𝐴↑2)))) = ((1 − (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
3111, 14, 303eqtrd 2659 . . . . 5 (𝐴 ∈ dom arctan → (exp‘(-i · (arctan‘𝐴))) = ((1 − (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
324, 31oveq12d 6625 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) + (exp‘(-i · (arctan‘𝐴)))) = (((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))) + ((1 − (i · 𝐴)) / (√‘(1 + (𝐴↑2))))))
33 addcl 9965 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
3420, 22, 33sylancr 694 . . . . 5 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
35 subcl 10227 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
3620, 22, 35sylancr 694 . . . . 5 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
3716sqcld 12949 . . . . . . 7 (𝐴 ∈ dom arctan → (𝐴↑2) ∈ ℂ)
38 addcl 9965 . . . . . . 7 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 + (𝐴↑2)) ∈ ℂ)
3920, 37, 38sylancr 694 . . . . . 6 (𝐴 ∈ dom arctan → (1 + (𝐴↑2)) ∈ ℂ)
4039sqrtcld 14113 . . . . 5 (𝐴 ∈ dom arctan → (√‘(1 + (𝐴↑2))) ∈ ℂ)
4139sqsqrtd 14115 . . . . . . 7 (𝐴 ∈ dom arctan → ((√‘(1 + (𝐴↑2)))↑2) = (1 + (𝐴↑2)))
4215simprbi 480 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (𝐴↑2)) ≠ 0)
4341, 42eqnetrd 2857 . . . . . 6 (𝐴 ∈ dom arctan → ((√‘(1 + (𝐴↑2)))↑2) ≠ 0)
44 sqne0 12873 . . . . . . 7 ((√‘(1 + (𝐴↑2))) ∈ ℂ → (((√‘(1 + (𝐴↑2)))↑2) ≠ 0 ↔ (√‘(1 + (𝐴↑2))) ≠ 0))
4540, 44syl 17 . . . . . 6 (𝐴 ∈ dom arctan → (((√‘(1 + (𝐴↑2)))↑2) ≠ 0 ↔ (√‘(1 + (𝐴↑2))) ≠ 0))
4643, 45mpbid 222 . . . . 5 (𝐴 ∈ dom arctan → (√‘(1 + (𝐴↑2))) ≠ 0)
4734, 36, 40, 46divdird 10786 . . . 4 (𝐴 ∈ dom arctan → (((1 + (i · 𝐴)) + (1 − (i · 𝐴))) / (√‘(1 + (𝐴↑2)))) = (((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))) + ((1 − (i · 𝐴)) / (√‘(1 + (𝐴↑2))))))
4820a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → 1 ∈ ℂ)
4948, 22, 48ppncand 10379 . . . . . 6 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴)) + (1 − (i · 𝐴))) = (1 + 1))
50 df-2 11026 . . . . . 6 2 = (1 + 1)
5149, 50syl6eqr 2673 . . . . 5 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴)) + (1 − (i · 𝐴))) = 2)
5251oveq1d 6622 . . . 4 (𝐴 ∈ dom arctan → (((1 + (i · 𝐴)) + (1 − (i · 𝐴))) / (√‘(1 + (𝐴↑2)))) = (2 / (√‘(1 + (𝐴↑2)))))
5332, 47, 523eqtr2d 2661 . . 3 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) + (exp‘(-i · (arctan‘𝐴)))) = (2 / (√‘(1 + (𝐴↑2)))))
5453oveq1d 6622 . 2 (𝐴 ∈ dom arctan → (((exp‘(i · (arctan‘𝐴))) + (exp‘(-i · (arctan‘𝐴)))) / 2) = ((2 / (√‘(1 + (𝐴↑2)))) / 2))
55 2cnd 11040 . . . 4 (𝐴 ∈ dom arctan → 2 ∈ ℂ)
56 2ne0 11060 . . . . 5 2 ≠ 0
5756a1i 11 . . . 4 (𝐴 ∈ dom arctan → 2 ≠ 0)
5855, 40, 55, 46, 57divdiv32d 10773 . . 3 (𝐴 ∈ dom arctan → ((2 / (√‘(1 + (𝐴↑2)))) / 2) = ((2 / 2) / (√‘(1 + (𝐴↑2)))))
59 2div2e1 11097 . . . 4 (2 / 2) = 1
6059oveq1i 6617 . . 3 ((2 / 2) / (√‘(1 + (𝐴↑2)))) = (1 / (√‘(1 + (𝐴↑2))))
6158, 60syl6eq 2671 . 2 (𝐴 ∈ dom arctan → ((2 / (√‘(1 + (𝐴↑2)))) / 2) = (1 / (√‘(1 + (𝐴↑2)))))
623, 54, 613eqtrd 2659 1 (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) = (1 / (√‘(1 + (𝐴↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1480  wcel 1987  wne 2790  dom cdm 5076  cfv 5849  (class class class)co 6607  cc 9881  0cc0 9883  1c1 9884  ici 9885   + caddc 9886   · cmul 9888  cmin 10213  -cneg 10214   / cdiv 10631  2c2 11017  cexp 12803  csqrt 13910  expce 14720  cosccos 14723  arctancatan 24498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961  ax-addf 9962  ax-mulf 9963
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-om 7016  df-1st 7116  df-2nd 7117  df-supp 7244  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-2o 7509  df-oadd 7512  df-er 7690  df-map 7807  df-pm 7808  df-ixp 7856  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-fsupp 8223  df-fi 8264  df-sup 8295  df-inf 8296  df-oi 8362  df-card 8712  df-cda 8937  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-q 11736  df-rp 11780  df-xneg 11893  df-xadd 11894  df-xmul 11895  df-ioo 12124  df-ioc 12125  df-ico 12126  df-icc 12127  df-fz 12272  df-fzo 12410  df-fl 12536  df-mod 12612  df-seq 12745  df-exp 12804  df-fac 13004  df-bc 13033  df-hash 13061  df-shft 13744  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-limsup 14139  df-clim 14156  df-rlim 14157  df-sum 14354  df-ef 14726  df-sin 14728  df-cos 14729  df-pi 14731  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-starv 15880  df-sca 15881  df-vsca 15882  df-ip 15883  df-tset 15884  df-ple 15885  df-ds 15888  df-unif 15889  df-hom 15890  df-cco 15891  df-rest 16007  df-topn 16008  df-0g 16026  df-gsum 16027  df-topgen 16028  df-pt 16029  df-prds 16032  df-xrs 16086  df-qtop 16091  df-imas 16092  df-xps 16094  df-mre 16170  df-mrc 16171  df-acs 16173  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-submnd 17260  df-mulg 17465  df-cntz 17674  df-cmn 18119  df-psmet 19660  df-xmet 19661  df-met 19662  df-bl 19663  df-mopn 19664  df-fbas 19665  df-fg 19666  df-cnfld 19669  df-top 20621  df-topon 20638  df-topsp 20651  df-bases 20664  df-cld 20736  df-ntr 20737  df-cls 20738  df-nei 20815  df-lp 20853  df-perf 20854  df-cn 20944  df-cnp 20945  df-haus 21032  df-tx 21278  df-hmeo 21471  df-fil 21563  df-fm 21655  df-flim 21656  df-flf 21657  df-xms 22038  df-ms 22039  df-tms 22040  df-cncf 22594  df-limc 23543  df-dv 23544  df-log 24214  df-cxp 24215  df-atan 24501
This theorem is referenced by:  cosatanne0  24556
  Copyright terms: Public domain W3C validator