MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosf Structured version   Visualization version   GIF version

Theorem cosf 14899
Description: Domain and codomain of the sine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
cosf cos:ℂ⟶ℂ

Proof of Theorem cosf
StepHypRef Expression
1 df-cos 14845 . 2 cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))
2 ax-icn 10033 . . . . . 6 i ∈ ℂ
3 mulcl 10058 . . . . . 6 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
42, 3mpan 706 . . . . 5 (𝑥 ∈ ℂ → (i · 𝑥) ∈ ℂ)
5 efcl 14857 . . . . 5 ((i · 𝑥) ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ)
64, 5syl 17 . . . 4 (𝑥 ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ)
7 negicn 10320 . . . . . 6 -i ∈ ℂ
8 mulcl 10058 . . . . . 6 ((-i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-i · 𝑥) ∈ ℂ)
97, 8mpan 706 . . . . 5 (𝑥 ∈ ℂ → (-i · 𝑥) ∈ ℂ)
10 efcl 14857 . . . . 5 ((-i · 𝑥) ∈ ℂ → (exp‘(-i · 𝑥)) ∈ ℂ)
119, 10syl 17 . . . 4 (𝑥 ∈ ℂ → (exp‘(-i · 𝑥)) ∈ ℂ)
126, 11addcld 10097 . . 3 (𝑥 ∈ ℂ → ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) ∈ ℂ)
1312halfcld 11315 . 2 (𝑥 ∈ ℂ → (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2) ∈ ℂ)
141, 13fmpti 6423 1 cos:ℂ⟶ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2030  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  ici 9976   + caddc 9977   · cmul 9979  -cneg 10305   / cdiv 10722  2c2 11108  expce 14836  cosccos 14839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-fac 13101  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-cos 14845
This theorem is referenced by:  coscl  14901  tanval  14902  recosf1o  24326  resinf1o  24327  ex-co  27425  taupilem3  33295  dvtan  33590  sinmulcos  40394  dvsinexp  40443  dvcosre  40444  dvsinax  40445  dvcosax  40459  itgsinexplem1  40487  dirkercncflem2  40639  fourierdlem56  40697  fourierdlem62  40703
  Copyright terms: Public domain W3C validator