Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coss0 Structured version   Visualization version   GIF version

Theorem coss0 35713
Description: Cosets by the empty set are the empty set. (Contributed by Peter Mazsa, 22-Oct-2019.)
Assertion
Ref Expression
coss0 ≀ ∅ = ∅

Proof of Theorem coss0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcoss2 35655 . 2 ≀ ∅ = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅)}
2 ec0 35615 . . . . . . 7 [𝑥]∅ = ∅
32eleq2i 2904 . . . . . 6 (𝑦 ∈ [𝑥]∅ ↔ 𝑦 ∈ ∅)
42eleq2i 2904 . . . . . 6 (𝑧 ∈ [𝑥]∅ ↔ 𝑧 ∈ ∅)
53, 4anbi12i 628 . . . . 5 ((𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅))
65exbii 1844 . . . 4 (∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ ∃𝑥(𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅))
7 19.9v 1984 . . . 4 (∃𝑥(𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅))
86, 7bitri 277 . . 3 (∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅))
98opabbii 5125 . 2 {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)}
10 prnzg 4706 . . . . . 6 (𝑦 ∈ V → {𝑦, 𝑧} ≠ ∅)
1110elv 3499 . . . . 5 {𝑦, 𝑧} ≠ ∅
12 ss0b 4350 . . . . 5 ({𝑦, 𝑧} ⊆ ∅ ↔ {𝑦, 𝑧} = ∅)
1311, 12nemtbir 3112 . . . 4 ¬ {𝑦, 𝑧} ⊆ ∅
14 prssg 4745 . . . . 5 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ {𝑦, 𝑧} ⊆ ∅))
1514el2v 3501 . . . 4 ((𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ {𝑦, 𝑧} ⊆ ∅)
1613, 15mtbir 325 . . 3 ¬ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)
1716opabf 35614 . 2 {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)} = ∅
181, 9, 173eqtri 2848 1 ≀ ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  wne 3016  Vcvv 3494  wss 3935  c0 4290  {cpr 4562  {copab 5120  [cec 8281  ccoss 35447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-xp 5555  df-cnv 5557  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-ec 8285  df-coss 35653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator