MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coss1 Structured version   Visualization version   GIF version

Theorem coss1 5310
Description: Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.)
Assertion
Ref Expression
coss1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))

Proof of Theorem coss1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssbr 4729 . . . . 5 (𝐴𝐵 → (𝑦𝐴𝑧𝑦𝐵𝑧))
21anim2d 588 . . . 4 (𝐴𝐵 → ((𝑥𝐶𝑦𝑦𝐴𝑧) → (𝑥𝐶𝑦𝑦𝐵𝑧)))
32eximdv 1886 . . 3 (𝐴𝐵 → (∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧) → ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)))
43ssopab2dv 5033 . 2 (𝐴𝐵 → {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)} ⊆ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)})
5 df-co 5152 . 2 (𝐴𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)}
6 df-co 5152 . 2 (𝐵𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)}
74, 5, 63sstr4g 3679 1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wex 1744  wss 3607   class class class wbr 4685  {copab 4745  ccom 5147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-in 3614  df-ss 3621  df-br 4686  df-opab 4746  df-co 5152
This theorem is referenced by:  coeq1  5312  funss  5945  tposss  7398  rtrclreclem4  13845  tsrdir  17285  ustex2sym  22067  ustex3sym  22068  ustund  22072  ustneism  22074  trust  22080  utop2nei  22101  neipcfilu  22147  trclubgNEW  38242  trrelsuperrel2dg  38280  trclrelexplem  38320  cotrcltrcl  38334  cotrclrcl  38351  frege96d  38358  frege97d  38361  frege109d  38366  frege131d  38373
  Copyright terms: Public domain W3C validator