MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coss12d Structured version   Visualization version   GIF version

Theorem coss12d 13418
Description: Subset deduction for composition of two classes. (Contributed by RP, 24-Dec-2019.)
Hypotheses
Ref Expression
coss12d.a (𝜑𝐴𝐵)
coss12d.c (𝜑𝐶𝐷)
Assertion
Ref Expression
coss12d (𝜑 → (𝐴𝐶) ⊆ (𝐵𝐷))

Proof of Theorem coss12d
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coss12d.c . . . . . 6 (𝜑𝐶𝐷)
21ssbrd 4524 . . . . 5 (𝜑 → (𝑥𝐶𝑦𝑥𝐷𝑦))
3 coss12d.a . . . . . 6 (𝜑𝐴𝐵)
43ssbrd 4524 . . . . 5 (𝜑 → (𝑦𝐴𝑧𝑦𝐵𝑧))
52, 4anim12d 583 . . . 4 (𝜑 → ((𝑥𝐶𝑦𝑦𝐴𝑧) → (𝑥𝐷𝑦𝑦𝐵𝑧)))
65eximdv 1799 . . 3 (𝜑 → (∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧) → ∃𝑦(𝑥𝐷𝑦𝑦𝐵𝑧)))
76ssopab2dv 4823 . 2 (𝜑 → {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)} ⊆ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐷𝑦𝑦𝐵𝑧)})
8 df-co 4941 . 2 (𝐴𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)}
9 df-co 4941 . 2 (𝐵𝐷) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐷𝑦𝑦𝐵𝑧)}
107, 8, 93sstr4g 3513 1 (𝜑 → (𝐴𝐶) ⊆ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wex 1694  wss 3444   class class class wbr 4481  {copab 4540  ccom 4936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-in 3451  df-ss 3458  df-br 4482  df-opab 4542  df-co 4941
This theorem is referenced by:  trrelssd  13419  relexpss1d  36913
  Copyright terms: Public domain W3C validator