Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosscnvssid5 Structured version   Visualization version   GIF version

Theorem cosscnvssid5 35717
Description: Equivalent expressions for the class of cosets by the converse of the relation 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
cosscnvssid5 (( ≀ 𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅))
Distinct variable group:   𝑢,𝑅,𝑣

Proof of Theorem cosscnvssid5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cosscnvssid4 35716 . . 3 ( ≀ 𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥)
21anbi1i 625 . 2 (( ≀ 𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅))
3 inecmo3 35614 . 2 ((∀𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅))
42, 3bitr4i 280 1 (( ≀ 𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wo 843  wal 1531   = wceq 1533  ∃*wmo 2616  wral 3138  cin 3934  wss 3935  c0 4290   class class class wbr 5065   I cid 5458  ccnv 5553  dom cdm 5554  Rel wrel 5559  [cec 8286  ccoss 35452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-br 5066  df-opab 5128  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-ec 8290  df-coss 35658
This theorem is referenced by:  dfdisjs5  35944  dfdisjALTV5  35949  eldisjs5  35958
  Copyright terms: Public domain W3C validator