MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coundi Structured version   Visualization version   GIF version

Theorem coundi 5595
Description: Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
coundi (𝐴 ∘ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem coundi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopab 4690 . . 3 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)}) = {⟨𝑥, 𝑦⟩ ∣ (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦))}
2 brun 4663 . . . . . . . 8 (𝑥(𝐵𝐶)𝑧 ↔ (𝑥𝐵𝑧𝑥𝐶𝑧))
32anbi1i 730 . . . . . . 7 ((𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧𝑥𝐶𝑧) ∧ 𝑧𝐴𝑦))
4 andir 911 . . . . . . 7 (((𝑥𝐵𝑧𝑥𝐶𝑧) ∧ 𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧𝑧𝐴𝑦)))
53, 4bitri 264 . . . . . 6 ((𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧𝑧𝐴𝑦)))
65exbii 1771 . . . . 5 (∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦) ↔ ∃𝑧((𝑥𝐵𝑧𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧𝑧𝐴𝑦)))
7 19.43 1807 . . . . 5 (∃𝑧((𝑥𝐵𝑧𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧𝑧𝐴𝑦)) ↔ (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)))
86, 7bitr2i 265 . . . 4 ((∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)) ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
98opabbii 4679 . . 3 {⟨𝑥, 𝑦⟩ ∣ (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦)}
101, 9eqtri 2643 . 2 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)}) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦)}
11 df-co 5083 . . 3 (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
12 df-co 5083 . . 3 (𝐴𝐶) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)}
1311, 12uneq12i 3743 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)})
14 df-co 5083 . 2 (𝐴 ∘ (𝐵𝐶)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦)}
1510, 13, 143eqtr4ri 2654 1 (𝐴 ∘ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wo 383  wa 384   = wceq 1480  wex 1701  cun 3553   class class class wbr 4613  {copab 4672  ccom 5078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3188  df-un 3560  df-br 4614  df-opab 4674  df-co 5083
This theorem is referenced by:  mvdco  17786  ustssco  21928  cvmliftlem10  30981  poimirlem9  33047  diophren  36854  rtrclex  37402  trclubgNEW  37403  trclexi  37405  rtrclexi  37406  cnvtrcl0  37411  trrelsuperrel2dg  37441  cotrclrcl  37512  frege131d  37534
  Copyright terms: Public domain W3C validator