HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  counop Structured version   Visualization version   GIF version

Theorem counop 29692
Description: The composition of two unitary operators is unitary. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
counop ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆𝑇) ∈ UniOp)

Proof of Theorem counop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopf1o 29687 . . . 4 (𝑆 ∈ UniOp → 𝑆: ℋ–1-1-onto→ ℋ)
2 unopf1o 29687 . . . 4 (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ)
3 f1oco 6632 . . . 4 ((𝑆: ℋ–1-1-onto→ ℋ ∧ 𝑇: ℋ–1-1-onto→ ℋ) → (𝑆𝑇): ℋ–1-1-onto→ ℋ)
41, 2, 3syl2an 597 . . 3 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆𝑇): ℋ–1-1-onto→ ℋ)
5 f1ofo 6617 . . 3 ((𝑆𝑇): ℋ–1-1-onto→ ℋ → (𝑆𝑇): ℋ–onto→ ℋ)
64, 5syl 17 . 2 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆𝑇): ℋ–onto→ ℋ)
7 f1of 6610 . . . . . . . 8 (𝑇: ℋ–1-1-onto→ ℋ → 𝑇: ℋ⟶ ℋ)
82, 7syl 17 . . . . . . 7 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
98adantl 484 . . . . . 6 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → 𝑇: ℋ⟶ ℋ)
10 simpl 485 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℋ)
11 fvco3 6755 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
129, 10, 11syl2an 597 . . . . 5 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
13 simpr 487 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑦 ∈ ℋ)
14 fvco3 6755 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆𝑇)‘𝑦) = (𝑆‘(𝑇𝑦)))
159, 13, 14syl2an 597 . . . . 5 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆𝑇)‘𝑦) = (𝑆‘(𝑇𝑦)))
1612, 15oveq12d 7168 . . . 4 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆𝑇)‘𝑥) ·ih ((𝑆𝑇)‘𝑦)) = ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))))
17 ffvelrn 6844 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
18 ffvelrn 6844 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
1917, 18anim12dan 620 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
208, 19sylan 582 . . . . . 6 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
21 unop 29686 . . . . . . 7 ((𝑆 ∈ UniOp ∧ (𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
22213expb 1116 . . . . . 6 ((𝑆 ∈ UniOp ∧ ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ)) → ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
2320, 22sylan2 594 . . . . 5 ((𝑆 ∈ UniOp ∧ (𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))) → ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
2423anassrs 470 . . . 4 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
25 unop 29686 . . . . . 6 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
26253expb 1116 . . . . 5 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
2726adantll 712 . . . 4 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
2816, 24, 273eqtrd 2860 . . 3 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆𝑇)‘𝑥) ·ih ((𝑆𝑇)‘𝑦)) = (𝑥 ·ih 𝑦))
2928ralrimivva 3191 . 2 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆𝑇)‘𝑥) ·ih ((𝑆𝑇)‘𝑦)) = (𝑥 ·ih 𝑦))
30 elunop 29643 . 2 ((𝑆𝑇) ∈ UniOp ↔ ((𝑆𝑇): ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆𝑇)‘𝑥) ·ih ((𝑆𝑇)‘𝑦)) = (𝑥 ·ih 𝑦)))
316, 29, 30sylanbrc 585 1 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆𝑇) ∈ UniOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  ccom 5554  wf 6346  ontowfo 6348  1-1-ontowf1o 6349  cfv 6350  (class class class)co 7150  chba 28690   ·ih csp 28693  UniOpcuo 28720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-hilex 28770  ax-hfvadd 28771  ax-hvcom 28772  ax-hvass 28773  ax-hv0cl 28774  ax-hvaddid 28775  ax-hfvmul 28776  ax-hvmulid 28777  ax-hvdistr2 28780  ax-hvmul0 28781  ax-hfi 28850  ax-his1 28853  ax-his2 28854  ax-his3 28855  ax-his4 28856
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-2 11694  df-cj 14452  df-re 14453  df-im 14454  df-hvsub 28742  df-unop 29614
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator