MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsqrtcl3 Structured version   Visualization version   GIF version

Theorem cphsqrtcl3 22895
Description: If the scalar field contains i, it is completely closed under square roots (i.e. it is quadratically closed). (Contributed by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
cphsca.f 𝐹 = (Scalar‘𝑊)
cphsca.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphsqrtcl3 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) → (√‘𝐴) ∈ 𝐾)

Proof of Theorem cphsqrtcl3
StepHypRef Expression
1 simpl1 1062 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) ∧ -𝐴 ∈ ℝ+) → 𝑊 ∈ ℂPreHil)
2 cphsca.f . . . . . . . . . . 11 𝐹 = (Scalar‘𝑊)
3 cphsca.k . . . . . . . . . . 11 𝐾 = (Base‘𝐹)
42, 3cphsubrg 22888 . . . . . . . . . 10 (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld))
51, 4syl 17 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐾 ∈ (SubRing‘ℂfld))
6 cnfldbas 19669 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
76subrgss 18702 . . . . . . . . 9 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ)
85, 7syl 17 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐾 ⊆ ℂ)
9 simpl3 1064 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐴𝐾)
108, 9sseldd 3584 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐴 ∈ ℂ)
1110negnegd 10327 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) ∧ -𝐴 ∈ ℝ+) → --𝐴 = 𝐴)
1211fveq2d 6152 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘--𝐴) = (√‘𝐴))
13 rpre 11783 . . . . . . 7 (-𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ)
1413adantl 482 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) ∧ -𝐴 ∈ ℝ+) → -𝐴 ∈ ℝ)
15 rpge0 11789 . . . . . . 7 (-𝐴 ∈ ℝ+ → 0 ≤ -𝐴)
1615adantl 482 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) ∧ -𝐴 ∈ ℝ+) → 0 ≤ -𝐴)
1714, 16sqrtnegd 14094 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘--𝐴) = (i · (√‘-𝐴)))
1812, 17eqtr3d 2657 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘𝐴) = (i · (√‘-𝐴)))
19 simpl2 1063 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) ∧ -𝐴 ∈ ℝ+) → i ∈ 𝐾)
20 cnfldneg 19691 . . . . . . . 8 (𝐴 ∈ ℂ → ((invg‘ℂfld)‘𝐴) = -𝐴)
2110, 20syl 17 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) ∧ -𝐴 ∈ ℝ+) → ((invg‘ℂfld)‘𝐴) = -𝐴)
22 subrgsubg 18707 . . . . . . . . 9 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ∈ (SubGrp‘ℂfld))
235, 22syl 17 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) ∧ -𝐴 ∈ ℝ+) → 𝐾 ∈ (SubGrp‘ℂfld))
24 eqid 2621 . . . . . . . . 9 (invg‘ℂfld) = (invg‘ℂfld)
2524subginvcl 17524 . . . . . . . 8 ((𝐾 ∈ (SubGrp‘ℂfld) ∧ 𝐴𝐾) → ((invg‘ℂfld)‘𝐴) ∈ 𝐾)
2623, 9, 25syl2anc 692 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) ∧ -𝐴 ∈ ℝ+) → ((invg‘ℂfld)‘𝐴) ∈ 𝐾)
2721, 26eqeltrrd 2699 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) ∧ -𝐴 ∈ ℝ+) → -𝐴𝐾)
282, 3cphsqrtcl 22892 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ (-𝐴𝐾 ∧ -𝐴 ∈ ℝ ∧ 0 ≤ -𝐴)) → (√‘-𝐴) ∈ 𝐾)
291, 27, 14, 16, 28syl13anc 1325 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘-𝐴) ∈ 𝐾)
30 cnfldmul 19671 . . . . . 6 · = (.r‘ℂfld)
3130subrgmcl 18713 . . . . 5 ((𝐾 ∈ (SubRing‘ℂfld) ∧ i ∈ 𝐾 ∧ (√‘-𝐴) ∈ 𝐾) → (i · (√‘-𝐴)) ∈ 𝐾)
325, 19, 29, 31syl3anc 1323 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) ∧ -𝐴 ∈ ℝ+) → (i · (√‘-𝐴)) ∈ 𝐾)
3318, 32eqeltrd 2698 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) ∧ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾)
3433ex 450 . 2 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) → (-𝐴 ∈ ℝ+ → (√‘𝐴) ∈ 𝐾))
352, 3cphsqrtcl2 22894 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾)
36353expia 1264 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → (¬ -𝐴 ∈ ℝ+ → (√‘𝐴) ∈ 𝐾))
37363adant2 1078 . 2 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) → (¬ -𝐴 ∈ ℝ+ → (√‘𝐴) ∈ 𝐾))
3834, 37pm2.61d 170 1 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾) → (√‘𝐴) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wss 3555   class class class wbr 4613  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  ici 9882   · cmul 9885  cle 10019  -cneg 10211  +crp 11776  csqrt 13907  Basecbs 15781  Scalarcsca 15865  invgcminusg 17344  SubGrpcsubg 17509  SubRingcsubrg 18697  fldccnfld 19665  ℂPreHilccph 22874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-rp 11777  df-ico 12123  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-grp 17346  df-minusg 17347  df-subg 17512  df-ghm 17579  df-cmn 18116  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-dvr 18604  df-rnghom 18636  df-drng 18670  df-subrg 18699  df-staf 18766  df-srng 18767  df-lvec 19022  df-cnfld 19666  df-phl 19890  df-cph 22876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator