![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cpm2mfval | Structured version Visualization version GIF version |
Description: Value of the inverse matrix transformation. (Contributed by AV, 14-Dec-2019.) |
Ref | Expression |
---|---|
cpm2mfval.i | ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) |
cpm2mfval.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
Ref | Expression |
---|---|
cpm2mfval | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐼 = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpm2mfval.i | . 2 ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) | |
2 | df-cpmat2mat 20713 | . . . 4 ⊢ cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))) |
4 | oveq12 6820 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 ConstPolyMat 𝑟) = (𝑁 ConstPolyMat 𝑅)) | |
5 | cpm2mfval.s | . . . . . 6 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
6 | 4, 5 | syl6eqr 2810 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 ConstPolyMat 𝑟) = 𝑆) |
7 | simpl 474 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → 𝑛 = 𝑁) | |
8 | eqidd 2759 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((coe1‘(𝑥𝑚𝑦))‘0) = ((coe1‘(𝑥𝑚𝑦))‘0)) | |
9 | 7, 7, 8 | mpt2eq123dv 6880 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) |
10 | 6, 9 | mpteq12dv 4883 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
11 | 10 | adantl 473 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) ∧ (𝑛 = 𝑁 ∧ 𝑟 = 𝑅)) → (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
12 | simpl 474 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ Fin) | |
13 | elex 3350 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
14 | 13 | adantl 473 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ V) |
15 | ovex 6839 | . . . . 5 ⊢ (𝑁 ConstPolyMat 𝑅) ∈ V | |
16 | 5, 15 | eqeltri 2833 | . . . 4 ⊢ 𝑆 ∈ V |
17 | mptexg 6646 | . . . 4 ⊢ (𝑆 ∈ V → (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) ∈ V) | |
18 | 16, 17 | mp1i 13 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) ∈ V) |
19 | 3, 11, 12, 14, 18 | ovmpt2d 6951 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑁 cPolyMatToMat 𝑅) = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
20 | 1, 19 | syl5eq 2804 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐼 = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1630 ∈ wcel 2137 Vcvv 3338 ↦ cmpt 4879 ‘cfv 6047 (class class class)co 6811 ↦ cmpt2 6813 Fincfn 8119 0cc0 10126 coe1cco1 19748 ConstPolyMat ccpmat 20708 cPolyMatToMat ccpmat2mat 20710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-rep 4921 ax-sep 4931 ax-nul 4939 ax-pr 5053 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-ral 3053 df-rex 3054 df-reu 3055 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-sn 4320 df-pr 4322 df-op 4326 df-uni 4587 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-id 5172 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-cpmat2mat 20713 |
This theorem is referenced by: cpm2mval 20755 cpm2mf 20757 m2cpmfo 20761 cayleyhamiltonALT 20896 |
Copyright terms: Public domain | W3C validator |