Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmadugsumlemB Structured version   Visualization version   GIF version

 Description: Lemma B for cpmadugsum 20615. (Contributed by AV, 2-Nov-2019.)
Hypotheses
Ref Expression
cpmadugsum.a 𝐴 = (𝑁 Mat 𝑅)
cpmadugsum.y 𝑌 = (𝑁 Mat 𝑃)
cpmadugsum.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
cpmadugsumlemB (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))))
Distinct variable groups:   𝐵,𝑖   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑖,𝑋   𝑖,𝑌   × ,𝑖   · ,𝑖   1 ,𝑖   𝑖,𝑏   𝑖,𝑠
Allowed substitution hints:   𝐴(𝑖,𝑠,𝑏)   𝐵(𝑠,𝑏)   𝑃(𝑖,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑖,𝑠,𝑏)   · (𝑠,𝑏)   × (𝑠,𝑏)   1 (𝑠,𝑏)   (𝑖,𝑠,𝑏)   𝑀(𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑋(𝑠,𝑏)   𝑌(𝑠,𝑏)

StepHypRef Expression
1 crngring 18490 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 cpmadugsum.p . . . . . . . . . . . . 13 𝑃 = (Poly1𝑅)
32ply1ring 19550 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
41, 3syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
543ad2ant2 1081 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
6 eqid 2621 . . . . . . . . . . 11 (mulGrp‘𝑃) = (mulGrp‘𝑃)
76ringmgp 18485 . . . . . . . . . 10 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
85, 7syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (mulGrp‘𝑃) ∈ Mnd)
98ad2antrr 761 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (mulGrp‘𝑃) ∈ Mnd)
10 elfznn0 12382 . . . . . . . . 9 (𝑖 ∈ (0...𝑠) → 𝑖 ∈ ℕ0)
1110adantl 482 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑖 ∈ ℕ0)
12 1nn0 11260 . . . . . . . . 9 1 ∈ ℕ0
1312a1i 11 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 1 ∈ ℕ0)
1413ad2ant2 1081 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
15 cpmadugsum.x . . . . . . . . . . 11 𝑋 = (var1𝑅)
16 eqid 2621 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
1715, 2, 16vr1cl 19519 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
1814, 17syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
1918ad2antrr 761 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑋 ∈ (Base‘𝑃))
206, 16mgpbas 18427 . . . . . . . . 9 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
21 cpmadugsum.e . . . . . . . . 9 = (.g‘(mulGrp‘𝑃))
22 eqid 2621 . . . . . . . . . 10 (.r𝑃) = (.r𝑃)
236, 22mgpplusg 18425 . . . . . . . . 9 (.r𝑃) = (+g‘(mulGrp‘𝑃))
2420, 21, 23mulgnn0dir 17503 . . . . . . . 8 (((mulGrp‘𝑃) ∈ Mnd ∧ (𝑖 ∈ ℕ0 ∧ 1 ∈ ℕ0𝑋 ∈ (Base‘𝑃))) → ((𝑖 + 1) 𝑋) = ((𝑖 𝑋)(.r𝑃)(1 𝑋)))
259, 11, 13, 19, 24syl13anc 1325 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 + 1) 𝑋) = ((𝑖 𝑋)(.r𝑃)(1 𝑋)))
262ply1crng 19500 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
2726anim2i 592 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
28273adant3 1079 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
29 cpmadugsum.y . . . . . . . . . . . 12 𝑌 = (𝑁 Mat 𝑃)
3029matsca2 20158 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
3128, 30syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 = (Scalar‘𝑌))
3231ad2antrr 761 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑃 = (Scalar‘𝑌))
3332fveq2d 6157 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (.r𝑃) = (.r‘(Scalar‘𝑌)))
34 eqidd 2622 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) = (𝑖 𝑋))
3520, 21mulg1 17480 . . . . . . . . . 10 (𝑋 ∈ (Base‘𝑃) → (1 𝑋) = 𝑋)
3618, 35syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (1 𝑋) = 𝑋)
3736ad2antrr 761 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (1 𝑋) = 𝑋)
3833, 34, 37oveq123d 6631 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋)(.r𝑃)(1 𝑋)) = ((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋))
3925, 38eqtrd 2655 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 + 1) 𝑋) = ((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋))
404anim2i 592 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
41403adant3 1079 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
4229matring 20181 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑌 ∈ Ring)
4341, 42syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
4443ad2antrr 761 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ Ring)
45 simpll1 1098 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑁 ∈ Fin)
4614ad2antrr 761 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑅 ∈ Ring)
47 simplrl 799 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑠 ∈ ℕ0)
48 simprr 795 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑏 ∈ (𝐵𝑚 (0...𝑠)))
4948anim1i 591 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑏 ∈ (𝐵𝑚 (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠)))
50 cpmadugsum.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
51 cpmadugsum.b . . . . . . . . . 10 𝐵 = (Base‘𝐴)
52 cpmadugsum.t . . . . . . . . . 10 𝑇 = (𝑁 matToPolyMat 𝑅)
5350, 51, 2, 29, 52m2pmfzmap 20484 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵𝑚 (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) → (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))
5445, 46, 47, 49, 53syl31anc 1326 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))
55 eqid 2621 . . . . . . . . 9 (Base‘𝑌) = (Base‘𝑌)
56 cpmadugsum.r . . . . . . . . 9 × = (.r𝑌)
57 cpmadugsum.1 . . . . . . . . 9 1 = (1r𝑌)
5855, 56, 57ringlidm 18503 . . . . . . . 8 ((𝑌 ∈ Ring ∧ (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌)) → ( 1 × (𝑇‘(𝑏𝑖))) = (𝑇‘(𝑏𝑖)))
5944, 54, 58syl2anc 692 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ( 1 × (𝑇‘(𝑏𝑖))) = (𝑇‘(𝑏𝑖)))
6059eqcomd 2627 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘(𝑏𝑖)) = ( 1 × (𝑇‘(𝑏𝑖))))
6139, 60oveq12d 6628 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) = (((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋) · ( 1 × (𝑇‘(𝑏𝑖)))))
6229matassa 20182 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑌 ∈ AssAlg)
6327, 62syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ AssAlg)
64633adant3 1079 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ AssAlg)
6564ad2antrr 761 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ AssAlg)
6631eqcomd 2627 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝑌) = 𝑃)
6766fveq2d 6157 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
6818, 67eleqtrrd 2701 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘(Scalar‘𝑌)))
6968ad2antrr 761 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑋 ∈ (Base‘(Scalar‘𝑌)))
7020, 21mulgnn0cl 17490 . . . . . . . . 9 (((mulGrp‘𝑃) ∈ Mnd ∧ 𝑖 ∈ ℕ0𝑋 ∈ (Base‘𝑃)) → (𝑖 𝑋) ∈ (Base‘𝑃))
719, 11, 19, 70syl3anc 1323 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) ∈ (Base‘𝑃))
7267ad2antrr 761 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
7371, 72eleqtrrd 2701 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)))
7440, 42syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring)
75743adant3 1079 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
7655, 57ringidcl 18500 . . . . . . . . 9 (𝑌 ∈ Ring → 1 ∈ (Base‘𝑌))
7775, 76syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 1 ∈ (Base‘𝑌))
7877ad2antrr 761 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 1 ∈ (Base‘𝑌))
79 eqid 2621 . . . . . . . 8 (Scalar‘𝑌) = (Scalar‘𝑌)
80 eqid 2621 . . . . . . . 8 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
81 eqid 2621 . . . . . . . 8 (.r‘(Scalar‘𝑌)) = (.r‘(Scalar‘𝑌))
82 cpmadugsum.m . . . . . . . 8 · = ( ·𝑠𝑌)
8355, 79, 80, 81, 82, 56assa2ass 19254 . . . . . . 7 ((𝑌 ∈ AssAlg ∧ (𝑋 ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌))) ∧ ( 1 ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))) → ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) = (((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋) · ( 1 × (𝑇‘(𝑏𝑖)))))
8465, 69, 73, 78, 54, 83syl122anc 1332 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) = (((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋) · ( 1 × (𝑇‘(𝑏𝑖)))))
8584eqcomd 2627 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋) · ( 1 × (𝑇‘(𝑏𝑖)))) = ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))
8661, 85eqtrd 2655 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) = ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))
8786mpteq2dva 4709 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))) = (𝑖 ∈ (0...𝑠) ↦ ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))))
8887oveq2d 6626 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))))
89 eqid 2621 . . 3 (0g𝑌) = (0g𝑌)
90 eqid 2621 . . 3 (+g𝑌) = (+g𝑌)
9175adantr 481 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑌 ∈ Ring)
92 ovexd 6640 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (0...𝑠) ∈ V)
9329matlmod 20167 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑌 ∈ LMod)
9440, 93syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod)
95943adant3 1079 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ LMod)
961adantl 482 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
9796, 17syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝑃))
9827, 30syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
9998eqcomd 2627 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Scalar‘𝑌) = 𝑃)
10099fveq2d 6157 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
10197, 100eleqtrrd 2701 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘(Scalar‘𝑌)))
1021013adant3 1079 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘(Scalar‘𝑌)))
10343, 76syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 1 ∈ (Base‘𝑌))
10455, 79, 82, 80lmodvscl 18812 . . . . 5 ((𝑌 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝑌)) ∧ 1 ∈ (Base‘𝑌)) → (𝑋 · 1 ) ∈ (Base‘𝑌))
10595, 102, 103, 104syl3anc 1323 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑌))
106105adantr 481 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑋 · 1 ) ∈ (Base‘𝑌))
10795ad2antrr 761 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ LMod)
10830eqcomd 2627 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → (Scalar‘𝑌) = 𝑃)
109108fveq2d 6157 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
11028, 109syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
111110eleq2d 2684 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 𝑋) ∈ (Base‘𝑃)))
112111ad2antrr 761 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 𝑋) ∈ (Base‘𝑃)))
11371, 112mpbird 247 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)))
11455, 79, 82, 80lmodvscl 18812 . . . 4 ((𝑌 ∈ LMod ∧ (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌)) → ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
115107, 113, 54, 114syl3anc 1323 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
116 simpl1 1062 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑁 ∈ Fin)
11714adantr 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑅 ∈ Ring)
118 simprl 793 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑠 ∈ ℕ0)
119 eqid 2621 . . . . 5 (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) = (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))
120 fzfid 12720 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (0...𝑠) ∈ Fin)
121 ovexd 6640 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))) ∈ V)
122 fvex 6163 . . . . . 6 (0g𝑌) ∈ V
123122a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (0g𝑌) ∈ V)
124119, 120, 121, 123fsuppmptdm 8238 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) finSupp (0g𝑌))
125116, 117, 118, 48, 124syl31anc 1326 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) finSupp (0g𝑌))
12655, 89, 90, 56, 91, 92, 106, 115, 125gsummulc2 18539 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))))
12788, 126eqtr2d 2656 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  Vcvv 3189   class class class wbr 4618   ↦ cmpt 4678  ‘cfv 5852  (class class class)co 6610   ↑𝑚 cmap 7809  Fincfn 7907   finSupp cfsupp 8227  0cc0 9888  1c1 9889   + caddc 9891  ℕ0cn0 11244  ...cfz 12276  Basecbs 15792  +gcplusg 15873  .rcmulr 15874  Scalarcsca 15876   ·𝑠 cvsca 15877  0gc0g 16032   Σg cgsu 16033  Mndcmnd 17226  .gcmg 17472  mulGrpcmgp 18421  1rcur 18433  Ringcrg 18479  CRingccrg 18480  LModclmod 18795  AssAlgcasa 19241  var1cv1 19478  Poly1cpl1 19479   Mat cmat 20145   matToPolyMat cmat2pmat 20441 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-ot 4162  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-ofr 6858  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-sup 8300  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-fz 12277  df-fzo 12415  df-seq 12750  df-hash 13066  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-hom 15898  df-cco 15899  df-0g 16034  df-gsum 16035  df-prds 16040  df-pws 16042  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-mhm 17267  df-submnd 17268  df-grp 17357  df-minusg 17358  df-sbg 17359  df-mulg 17473  df-subg 17523  df-ghm 17590  df-cntz 17682  df-cmn 18127  df-abl 18128  df-mgp 18422  df-ur 18434  df-ring 18481  df-cring 18482  df-subrg 18710  df-lmod 18797  df-lss 18865  df-sra 19104  df-rgmod 19105  df-assa 19244  df-ascl 19246  df-psr 19288  df-mvr 19289  df-mpl 19290  df-opsr 19292  df-psr1 19482  df-vr1 19483  df-ply1 19484  df-dsmm 20008  df-frlm 20023  df-mamu 20122  df-mat 20146  df-mat2pmat 20444 This theorem is referenced by:  cpmadugsumlemF  20613
 Copyright terms: Public domain W3C validator