Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmatsubgpmat Structured version   Visualization version   GIF version

Theorem cpmatsubgpmat 20719
 Description: The set of all constant polynomial matrices over a ring 𝑅 is an additive subgroup of the ring of all polynomial matrices over the ring 𝑅. (Contributed by AV, 15-Nov-2019.)
Hypotheses
Ref Expression
cpmatsrngpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmatsrngpmat.p 𝑃 = (Poly1𝑅)
cpmatsrngpmat.c 𝐶 = (𝑁 Mat 𝑃)
Assertion
Ref Expression
cpmatsubgpmat ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶))

Proof of Theorem cpmatsubgpmat
Dummy variables 𝑖 𝑗 𝑥 𝑦 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpmatsrngpmat.s . . . 4 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 cpmatsrngpmat.p . . . 4 𝑃 = (Poly1𝑅)
3 cpmatsrngpmat.c . . . 4 𝐶 = (𝑁 Mat 𝑃)
4 eqid 2752 . . . 4 (Base‘𝐶) = (Base‘𝐶)
51, 2, 3, 4cpmat 20708 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ (Base‘𝐶) ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
6 ssrab2 3820 . . 3 {𝑚 ∈ (Base‘𝐶) ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)} ⊆ (Base‘𝐶)
75, 6syl6eqss 3788 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ⊆ (Base‘𝐶))
81, 2, 31elcpmat 20714 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐶) ∈ 𝑆)
9 ne0i 4056 . . 3 ((1r𝐶) ∈ 𝑆𝑆 ≠ ∅)
108, 9syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ≠ ∅)
111, 2, 3cpmatacl 20715 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐶)𝑦) ∈ 𝑆)
121, 2, 3cpmatinvcl 20716 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆 ((invg𝐶)‘𝑥) ∈ 𝑆)
13 r19.26 3194 . . 3 (∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐶)𝑦) ∈ 𝑆 ∧ ((invg𝐶)‘𝑥) ∈ 𝑆) ↔ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐶)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 ((invg𝐶)‘𝑥) ∈ 𝑆))
1411, 12, 13sylanbrc 701 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐶)𝑦) ∈ 𝑆 ∧ ((invg𝐶)‘𝑥) ∈ 𝑆))
152, 3pmatring 20692 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
16 ringgrp 18744 . . 3 (𝐶 ∈ Ring → 𝐶 ∈ Grp)
17 eqid 2752 . . . 4 (+g𝐶) = (+g𝐶)
18 eqid 2752 . . . 4 (invg𝐶) = (invg𝐶)
194, 17, 18issubg2 17802 . . 3 (𝐶 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐶) ↔ (𝑆 ⊆ (Base‘𝐶) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐶)𝑦) ∈ 𝑆 ∧ ((invg𝐶)‘𝑥) ∈ 𝑆))))
2015, 16, 193syl 18 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑆 ∈ (SubGrp‘𝐶) ↔ (𝑆 ⊆ (Base‘𝐶) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐶)𝑦) ∈ 𝑆 ∧ ((invg𝐶)‘𝑥) ∈ 𝑆))))
217, 10, 14, 20mpbir3and 1425 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1624   ∈ wcel 2131   ≠ wne 2924  ∀wral 3042  {crab 3046   ⊆ wss 3707  ∅c0 4050  ‘cfv 6041  (class class class)co 6805  Fincfn 8113  ℕcn 11204  Basecbs 16051  +gcplusg 16135  0gc0g 16294  Grpcgrp 17615  invgcminusg 17616  SubGrpcsubg 17781  1rcur 18693  Ringcrg 18739  Poly1cpl1 19741  coe1cco1 19742   Mat cmat 20407   ConstPolyMat ccpmat 20702 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-ot 4322  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-ofr 7055  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-map 8017  df-pm 8018  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-sup 8505  df-oi 8572  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-fz 12512  df-fzo 12652  df-seq 12988  df-hash 13304  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-sca 16151  df-vsca 16152  df-ip 16153  df-tset 16154  df-ple 16155  df-ds 16158  df-hom 16160  df-cco 16161  df-0g 16296  df-gsum 16297  df-prds 16302  df-pws 16304  df-mre 16440  df-mrc 16441  df-acs 16443  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-mhm 17528  df-submnd 17529  df-grp 17618  df-minusg 17619  df-sbg 17620  df-mulg 17734  df-subg 17784  df-ghm 17851  df-cntz 17942  df-cmn 18387  df-abl 18388  df-mgp 18682  df-ur 18694  df-srg 18698  df-ring 18741  df-subrg 18972  df-lmod 19059  df-lss 19127  df-sra 19366  df-rgmod 19367  df-ascl 19508  df-psr 19550  df-mvr 19551  df-mpl 19552  df-opsr 19554  df-psr1 19744  df-vr1 19745  df-ply1 19746  df-coe1 19747  df-dsmm 20270  df-frlm 20285  df-mamu 20384  df-mat 20408  df-cpmat 20705 This theorem is referenced by:  cpmatsrgpmat  20720  0elcpmat  20721  m2cpmghm  20743  m2cpmrngiso  20757  chfacfisfcpmat  20854
 Copyright terms: Public domain W3C validator