Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshwlkn0lem2 Structured version   Visualization version   GIF version

Theorem crctcshwlkn0lem2 26759
 Description: Lemma for crctcshwlkn0 26769. (Contributed by AV, 12-Mar-2021.)
Hypotheses
Ref Expression
crctcshwlkn0lem.s (𝜑𝑆 ∈ (1..^𝑁))
crctcshwlkn0lem.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
Assertion
Ref Expression
crctcshwlkn0lem2 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → (𝑄𝐽) = (𝑃‘(𝐽 + 𝑆)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥
Allowed substitution hint:   𝑄(𝑥)

Proof of Theorem crctcshwlkn0lem2
StepHypRef Expression
1 crctcshwlkn0lem.q . . . 4 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
21a1i 11 . . 3 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))))
3 breq1 4688 . . . . 5 (𝑥 = 𝐽 → (𝑥 ≤ (𝑁𝑆) ↔ 𝐽 ≤ (𝑁𝑆)))
4 oveq1 6697 . . . . . 6 (𝑥 = 𝐽 → (𝑥 + 𝑆) = (𝐽 + 𝑆))
54fveq2d 6233 . . . . 5 (𝑥 = 𝐽 → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘(𝐽 + 𝑆)))
64oveq1d 6705 . . . . . 6 (𝑥 = 𝐽 → ((𝑥 + 𝑆) − 𝑁) = ((𝐽 + 𝑆) − 𝑁))
76fveq2d 6233 . . . . 5 (𝑥 = 𝐽 → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
83, 5, 7ifbieq12d 4146 . . . 4 (𝑥 = 𝐽 → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))))
98adantl 481 . . 3 (((𝜑𝐽 ∈ (0...(𝑁𝑆))) ∧ 𝑥 = 𝐽) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))))
10 crctcshwlkn0lem.s . . . . 5 (𝜑𝑆 ∈ (1..^𝑁))
11 fzo0ss1 12537 . . . . . 6 (1..^𝑁) ⊆ (0..^𝑁)
1211sseli 3632 . . . . 5 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ (0..^𝑁))
13 elfzoel2 12508 . . . . . . . 8 (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ ℤ)
14 elfzonn0 12552 . . . . . . . 8 (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℕ0)
15 eluzmn 11732 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → 𝑁 ∈ (ℤ‘(𝑁𝑆)))
1613, 14, 15syl2anc 694 . . . . . . 7 (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ (ℤ‘(𝑁𝑆)))
17 fzss2 12419 . . . . . . 7 (𝑁 ∈ (ℤ‘(𝑁𝑆)) → (0...(𝑁𝑆)) ⊆ (0...𝑁))
1816, 17syl 17 . . . . . 6 (𝑆 ∈ (0..^𝑁) → (0...(𝑁𝑆)) ⊆ (0...𝑁))
1918sseld 3635 . . . . 5 (𝑆 ∈ (0..^𝑁) → (𝐽 ∈ (0...(𝑁𝑆)) → 𝐽 ∈ (0...𝑁)))
2010, 12, 193syl 18 . . . 4 (𝜑 → (𝐽 ∈ (0...(𝑁𝑆)) → 𝐽 ∈ (0...𝑁)))
2120imp 444 . . 3 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → 𝐽 ∈ (0...𝑁))
22 fvex 6239 . . . . 5 (𝑃‘(𝐽 + 𝑆)) ∈ V
23 fvex 6239 . . . . 5 (𝑃‘((𝐽 + 𝑆) − 𝑁)) ∈ V
2422, 23ifex 4189 . . . 4 if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V
2524a1i 11 . . 3 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V)
262, 9, 21, 25fvmptd 6327 . 2 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → (𝑄𝐽) = if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))))
27 elfzle2 12383 . . . 4 (𝐽 ∈ (0...(𝑁𝑆)) → 𝐽 ≤ (𝑁𝑆))
2827adantl 481 . . 3 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → 𝐽 ≤ (𝑁𝑆))
2928iftrued 4127 . 2 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) = (𝑃‘(𝐽 + 𝑆)))
3026, 29eqtrd 2685 1 ((𝜑𝐽 ∈ (0...(𝑁𝑆))) → (𝑄𝐽) = (𝑃‘(𝐽 + 𝑆)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  Vcvv 3231   ⊆ wss 3607  ifcif 4119   class class class wbr 4685   ↦ cmpt 4762  ‘cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975   + caddc 9977   ≤ cle 10113   − cmin 10304  ℕ0cn0 11330  ℤcz 11415  ℤ≥cuz 11725  ...cfz 12364  ..^cfzo 12504 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505 This theorem is referenced by:  crctcshwlkn0lem4  26761  crctcshwlkn0lem6  26763
 Copyright terms: Public domain W3C validator