MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshwlkn0lem3 Structured version   Visualization version   GIF version

Theorem crctcshwlkn0lem3 27517
Description: Lemma for crctcshwlkn0 27526. (Contributed by AV, 12-Mar-2021.)
Hypotheses
Ref Expression
crctcshwlkn0lem.s (𝜑𝑆 ∈ (1..^𝑁))
crctcshwlkn0lem.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
Assertion
Ref Expression
crctcshwlkn0lem3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → (𝑄𝐽) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥
Allowed substitution hint:   𝑄(𝑥)

Proof of Theorem crctcshwlkn0lem3
StepHypRef Expression
1 crctcshwlkn0lem.q . . 3 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
2 breq1 5060 . . . 4 (𝑥 = 𝐽 → (𝑥 ≤ (𝑁𝑆) ↔ 𝐽 ≤ (𝑁𝑆)))
3 fvoveq1 7168 . . . 4 (𝑥 = 𝐽 → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘(𝐽 + 𝑆)))
4 oveq1 7152 . . . . 5 (𝑥 = 𝐽 → (𝑥 + 𝑆) = (𝐽 + 𝑆))
54fvoveq1d 7167 . . . 4 (𝑥 = 𝐽 → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
62, 3, 5ifbieq12d 4490 . . 3 (𝑥 = 𝐽 → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))))
7 crctcshwlkn0lem.s . . . . . 6 (𝜑𝑆 ∈ (1..^𝑁))
8 0zd 11981 . . . . . . 7 (𝑆 ∈ (1..^𝑁) → 0 ∈ ℤ)
9 elfzoel2 13025 . . . . . . . . 9 (𝑆 ∈ (1..^𝑁) → 𝑁 ∈ ℤ)
10 elfzoelz 13026 . . . . . . . . 9 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ ℤ)
119, 10zsubcld 12080 . . . . . . . 8 (𝑆 ∈ (1..^𝑁) → (𝑁𝑆) ∈ ℤ)
1211peano2zd 12078 . . . . . . 7 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ∈ ℤ)
13 elfzo1 13075 . . . . . . . 8 (𝑆 ∈ (1..^𝑁) ↔ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁))
14 nnre 11633 . . . . . . . . . 10 (𝑆 ∈ ℕ → 𝑆 ∈ ℝ)
15 nnre 11633 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
16 posdif 11121 . . . . . . . . . . 11 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 ↔ 0 < (𝑁𝑆)))
17 0red 10632 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 0 ∈ ℝ)
18 resubcl 10938 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑁𝑆) ∈ ℝ)
1918ancoms 459 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁𝑆) ∈ ℝ)
20 ltle 10717 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (𝑁𝑆) ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ (𝑁𝑆)))
2117, 19, 20syl2anc 584 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ (𝑁𝑆)))
2219lep1d 11559 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁𝑆) ≤ ((𝑁𝑆) + 1))
23 1red 10630 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 1 ∈ ℝ)
2419, 23readdcld 10658 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑁𝑆) + 1) ∈ ℝ)
25 letr 10722 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (𝑁𝑆) ∈ ℝ ∧ ((𝑁𝑆) + 1) ∈ ℝ) → ((0 ≤ (𝑁𝑆) ∧ (𝑁𝑆) ≤ ((𝑁𝑆) + 1)) → 0 ≤ ((𝑁𝑆) + 1)))
2617, 19, 24, 25syl3anc 1363 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ (𝑁𝑆) ∧ (𝑁𝑆) ≤ ((𝑁𝑆) + 1)) → 0 ≤ ((𝑁𝑆) + 1)))
2722, 26mpan2d 690 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ (𝑁𝑆) → 0 ≤ ((𝑁𝑆) + 1)))
2821, 27syld 47 . . . . . . . . . . 11 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ ((𝑁𝑆) + 1)))
2916, 28sylbid 241 . . . . . . . . . 10 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 → 0 ≤ ((𝑁𝑆) + 1)))
3014, 15, 29syl2an 595 . . . . . . . . 9 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 < 𝑁 → 0 ≤ ((𝑁𝑆) + 1)))
31303impia 1109 . . . . . . . 8 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 0 ≤ ((𝑁𝑆) + 1))
3213, 31sylbi 218 . . . . . . 7 (𝑆 ∈ (1..^𝑁) → 0 ≤ ((𝑁𝑆) + 1))
33 eluz2 12237 . . . . . . 7 (((𝑁𝑆) + 1) ∈ (ℤ‘0) ↔ (0 ∈ ℤ ∧ ((𝑁𝑆) + 1) ∈ ℤ ∧ 0 ≤ ((𝑁𝑆) + 1)))
348, 12, 32, 33syl3anbrc 1335 . . . . . 6 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ∈ (ℤ‘0))
357, 34syl 17 . . . . 5 (𝜑 → ((𝑁𝑆) + 1) ∈ (ℤ‘0))
36 fzss1 12934 . . . . 5 (((𝑁𝑆) + 1) ∈ (ℤ‘0) → (((𝑁𝑆) + 1)...𝑁) ⊆ (0...𝑁))
3735, 36syl 17 . . . 4 (𝜑 → (((𝑁𝑆) + 1)...𝑁) ⊆ (0...𝑁))
3837sselda 3964 . . 3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → 𝐽 ∈ (0...𝑁))
39 fvex 6676 . . . . 5 (𝑃‘(𝐽 + 𝑆)) ∈ V
40 fvex 6676 . . . . 5 (𝑃‘((𝐽 + 𝑆) − 𝑁)) ∈ V
4139, 40ifex 4511 . . . 4 if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V
4241a1i 11 . . 3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V)
431, 6, 38, 42fvmptd3 6783 . 2 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → (𝑄𝐽) = if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))))
44 elfz2 12887 . . . . . 6 (𝐽 ∈ (((𝑁𝑆) + 1)...𝑁) ↔ ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (((𝑁𝑆) + 1) ≤ 𝐽𝐽𝑁)))
45 zre 11973 . . . . . . . . . . . . . . 15 (𝑆 ∈ ℤ → 𝑆 ∈ ℝ)
46 zre 11973 . . . . . . . . . . . . . . . 16 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
47 zre 11973 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4846, 47anim12i 612 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ))
49 simprr 769 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝑁 ∈ ℝ)
50 simpl 483 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝑆 ∈ ℝ)
5149, 50resubcld 11056 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝑁𝑆) ∈ ℝ)
5251ltp1d 11558 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝑁𝑆) < ((𝑁𝑆) + 1))
53 1red 10630 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 1 ∈ ℝ)
5451, 53readdcld 10658 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → ((𝑁𝑆) + 1) ∈ ℝ)
55 simprl 767 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝐽 ∈ ℝ)
56 ltletr 10720 . . . . . . . . . . . . . . . . . 18 (((𝑁𝑆) ∈ ℝ ∧ ((𝑁𝑆) + 1) ∈ ℝ ∧ 𝐽 ∈ ℝ) → (((𝑁𝑆) < ((𝑁𝑆) + 1) ∧ ((𝑁𝑆) + 1) ≤ 𝐽) → (𝑁𝑆) < 𝐽))
5751, 54, 55, 56syl3anc 1363 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (((𝑁𝑆) < ((𝑁𝑆) + 1) ∧ ((𝑁𝑆) + 1) ≤ 𝐽) → (𝑁𝑆) < 𝐽))
5852, 57mpand 691 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (((𝑁𝑆) + 1) ≤ 𝐽 → (𝑁𝑆) < 𝐽))
5951, 55ltnled 10775 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → ((𝑁𝑆) < 𝐽 ↔ ¬ 𝐽 ≤ (𝑁𝑆)))
6058, 59sylibd 240 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆)))
6145, 48, 60syl2an 595 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℤ ∧ (𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆)))
6261expcom 414 . . . . . . . . . . . . 13 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑆 ∈ ℤ → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
6362ancoms 459 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑆 ∈ ℤ → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
64633adant1 1122 . . . . . . . . . . 11 ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑆 ∈ ℤ → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
6510, 64syl5com 31 . . . . . . . . . 10 (𝑆 ∈ (1..^𝑁) → ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
6665com13 88 . . . . . . . . 9 (((𝑁𝑆) + 1) ≤ 𝐽 → ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑆 ∈ (1..^𝑁) → ¬ 𝐽 ≤ (𝑁𝑆))))
6766adantr 481 . . . . . . . 8 ((((𝑁𝑆) + 1) ≤ 𝐽𝐽𝑁) → ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑆 ∈ (1..^𝑁) → ¬ 𝐽 ≤ (𝑁𝑆))))
6867impcom 408 . . . . . . 7 (((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (((𝑁𝑆) + 1) ≤ 𝐽𝐽𝑁)) → (𝑆 ∈ (1..^𝑁) → ¬ 𝐽 ≤ (𝑁𝑆)))
6968com12 32 . . . . . 6 (𝑆 ∈ (1..^𝑁) → (((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (((𝑁𝑆) + 1) ≤ 𝐽𝐽𝑁)) → ¬ 𝐽 ≤ (𝑁𝑆)))
7044, 69syl5bi 243 . . . . 5 (𝑆 ∈ (1..^𝑁) → (𝐽 ∈ (((𝑁𝑆) + 1)...𝑁) → ¬ 𝐽 ≤ (𝑁𝑆)))
717, 70syl 17 . . . 4 (𝜑 → (𝐽 ∈ (((𝑁𝑆) + 1)...𝑁) → ¬ 𝐽 ≤ (𝑁𝑆)))
7271imp 407 . . 3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → ¬ 𝐽 ≤ (𝑁𝑆))
7372iffalsed 4474 . 2 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
7443, 73eqtrd 2853 1 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → (𝑄𝐽) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  Vcvv 3492  wss 3933  ifcif 4463   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7145  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   < clt 10663  cle 10664  cmin 10858  cn 11626  cz 11969  cuz 12231  ...cfz 12880  ..^cfzo 13021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022
This theorem is referenced by:  crctcshwlkn0lem5  27519  crctcshwlkn0lem6  27520
  Copyright terms: Public domain W3C validator