Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crefdf Structured version   Visualization version   GIF version

Theorem crefdf 29721
Description: A formulation of crefi 29720 easier to use for definitions. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Hypotheses
Ref Expression
crefi.x 𝑋 = 𝐽
crefdf.b 𝐵 = CovHasRef𝐴
crefdf.p (𝑧𝐴𝜑)
Assertion
Ref Expression
crefdf ((𝐽𝐵𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ 𝒫 𝐽(𝜑𝑧Ref𝐶))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐽   𝑧,𝐶
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)   𝑋(𝑧)

Proof of Theorem crefdf
StepHypRef Expression
1 crefdf.b . . . 4 𝐵 = CovHasRef𝐴
21eleq2i 2690 . . 3 (𝐽𝐵𝐽 ∈ CovHasRef𝐴)
3 crefi.x . . . 4 𝑋 = 𝐽
43crefi 29720 . . 3 ((𝐽 ∈ CovHasRef𝐴𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)
52, 4syl3an1b 1359 . 2 ((𝐽𝐵𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶)
6 elin 3779 . . . . . 6 (𝑧 ∈ (𝒫 𝐽𝐴) ↔ (𝑧 ∈ 𝒫 𝐽𝑧𝐴))
7 crefdf.p . . . . . . 7 (𝑧𝐴𝜑)
87anim2i 592 . . . . . 6 ((𝑧 ∈ 𝒫 𝐽𝑧𝐴) → (𝑧 ∈ 𝒫 𝐽𝜑))
96, 8sylbi 207 . . . . 5 (𝑧 ∈ (𝒫 𝐽𝐴) → (𝑧 ∈ 𝒫 𝐽𝜑))
109anim1i 591 . . . 4 ((𝑧 ∈ (𝒫 𝐽𝐴) ∧ 𝑧Ref𝐶) → ((𝑧 ∈ 𝒫 𝐽𝜑) ∧ 𝑧Ref𝐶))
11 anass 680 . . . 4 (((𝑧 ∈ 𝒫 𝐽𝜑) ∧ 𝑧Ref𝐶) ↔ (𝑧 ∈ 𝒫 𝐽 ∧ (𝜑𝑧Ref𝐶)))
1210, 11sylib 208 . . 3 ((𝑧 ∈ (𝒫 𝐽𝐴) ∧ 𝑧Ref𝐶) → (𝑧 ∈ 𝒫 𝐽 ∧ (𝜑𝑧Ref𝐶)))
1312reximi2 3005 . 2 (∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝐶 → ∃𝑧 ∈ 𝒫 𝐽(𝜑𝑧Ref𝐶))
145, 13syl 17 1 ((𝐽𝐵𝐶𝐽𝑋 = 𝐶) → ∃𝑧 ∈ 𝒫 𝐽(𝜑𝑧Ref𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wrex 2908  cin 3558  wss 3559  𝒫 cpw 4135   cuni 4407   class class class wbr 4618  Refcref 21228  CovHasRefccref 29715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-cref 29716
This theorem is referenced by:  cmpfiref  29724  ldlfcntref  29727
  Copyright terms: Public domain W3C validator