Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crngm4 Structured version   Visualization version   GIF version

Theorem crngm4 35283
Description: Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
crngm.1 𝐺 = (1st𝑅)
crngm.2 𝐻 = (2nd𝑅)
crngm.3 𝑋 = ran 𝐺
Assertion
Ref Expression
crngm4 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))

Proof of Theorem crngm4
StepHypRef Expression
1 df-3an 1085 . . . . . 6 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋))
2 crngm.1 . . . . . . 7 𝐺 = (1st𝑅)
3 crngm.2 . . . . . . 7 𝐻 = (2nd𝑅)
4 crngm.3 . . . . . . 7 𝑋 = ran 𝐺
52, 3, 4crngm23 35282 . . . . . 6 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵))
61, 5sylan2br 596 . . . . 5 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵))
76adantrrr 723 . . . 4 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵))
87oveq1d 7173 . . 3 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷))
9 crngorngo 35280 . . . 4 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
102, 3, 4rngocl 35181 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
11103expb 1116 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
1211adantrr 715 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (𝐴𝐻𝐵) ∈ 𝑋)
13 simprrl 779 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐶𝑋)
14 simprrr 780 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐷𝑋)
1512, 13, 143jca 1124 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐻𝐵) ∈ 𝑋𝐶𝑋𝐷𝑋))
162, 3, 4rngoass 35186 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝐴𝐻𝐵) ∈ 𝑋𝐶𝑋𝐷𝑋)) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)))
1715, 16syldan 593 . . . 4 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)))
189, 17sylan 582 . . 3 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)))
192, 3, 4rngocl 35181 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐻𝐶) ∈ 𝑋)
20193expb 1116 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐶𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋)
2120adantrlr 721 . . . . . . 7 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋)
2221adantrrr 723 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (𝐴𝐻𝐶) ∈ 𝑋)
23 simprlr 778 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐵𝑋)
2422, 23, 143jca 1124 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐻𝐶) ∈ 𝑋𝐵𝑋𝐷𝑋))
252, 3, 4rngoass 35186 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝐴𝐻𝐶) ∈ 𝑋𝐵𝑋𝐷𝑋)) → (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
2624, 25syldan 593 . . . 4 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
279, 26sylan 582 . . 3 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
288, 18, 273eqtr3d 2866 . 2 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
29283impb 1111 1 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  ran crn 5558  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  RingOpscrngo 35174  CRingOpsccring 35273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-1st 7691  df-2nd 7692  df-rngo 35175  df-com2 35270  df-crngo 35274
This theorem is referenced by:  ispridlc  35350
  Copyright terms: Public domain W3C validator