MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crngpropd Structured version   Visualization version   GIF version

Theorem crngpropd 18564
Description: If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
ringpropd.1 (𝜑𝐵 = (Base‘𝐾))
ringpropd.2 (𝜑𝐵 = (Base‘𝐿))
ringpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
ringpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
crngpropd (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem crngpropd
StepHypRef Expression
1 ringpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 ringpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 ringpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
4 ringpropd.4 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4ringpropd 18563 . . 3 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
6 eqid 2620 . . . . . 6 (mulGrp‘𝐾) = (mulGrp‘𝐾)
7 eqid 2620 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
86, 7mgpbas 18476 . . . . 5 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
91, 8syl6eq 2670 . . . 4 (𝜑𝐵 = (Base‘(mulGrp‘𝐾)))
10 eqid 2620 . . . . . 6 (mulGrp‘𝐿) = (mulGrp‘𝐿)
11 eqid 2620 . . . . . 6 (Base‘𝐿) = (Base‘𝐿)
1210, 11mgpbas 18476 . . . . 5 (Base‘𝐿) = (Base‘(mulGrp‘𝐿))
132, 12syl6eq 2670 . . . 4 (𝜑𝐵 = (Base‘(mulGrp‘𝐿)))
14 eqid 2620 . . . . . . 7 (.r𝐾) = (.r𝐾)
156, 14mgpplusg 18474 . . . . . 6 (.r𝐾) = (+g‘(mulGrp‘𝐾))
1615oveqi 6648 . . . . 5 (𝑥(.r𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)
17 eqid 2620 . . . . . . 7 (.r𝐿) = (.r𝐿)
1810, 17mgpplusg 18474 . . . . . 6 (.r𝐿) = (+g‘(mulGrp‘𝐿))
1918oveqi 6648 . . . . 5 (𝑥(.r𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)
204, 16, 193eqtr3g 2677 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
219, 13, 20cmnpropd 18183 . . 3 (𝜑 → ((mulGrp‘𝐾) ∈ CMnd ↔ (mulGrp‘𝐿) ∈ CMnd))
225, 21anbi12d 746 . 2 (𝜑 → ((𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd) ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd)))
236iscrng 18535 . 2 (𝐾 ∈ CRing ↔ (𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd))
2410iscrng 18535 . 2 (𝐿 ∈ CRing ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd))
2522, 23, 243bitr4g 303 1 (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  cfv 5876  (class class class)co 6635  Basecbs 15838  +gcplusg 15922  .rcmulr 15923  CMndccmn 18174  mulGrpcmgp 18470  Ringcrg 18528  CRingccrg 18529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-plusg 15935  df-0g 16083  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-grp 17406  df-cmn 18176  df-mgp 18471  df-ring 18530  df-cring 18531
This theorem is referenced by:  fldpropd  18756  opsrcrng  19469  zncrng  19874
  Copyright terms: Public domain W3C validator