MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crngpropd Structured version   Visualization version   GIF version

Theorem crngpropd 19327
Description: If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
ringpropd.1 (𝜑𝐵 = (Base‘𝐾))
ringpropd.2 (𝜑𝐵 = (Base‘𝐿))
ringpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
ringpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
crngpropd (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem crngpropd
StepHypRef Expression
1 ringpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 ringpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 ringpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
4 ringpropd.4 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4ringpropd 19326 . . 3 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
6 eqid 2821 . . . . . 6 (mulGrp‘𝐾) = (mulGrp‘𝐾)
7 eqid 2821 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
86, 7mgpbas 19239 . . . . 5 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
91, 8syl6eq 2872 . . . 4 (𝜑𝐵 = (Base‘(mulGrp‘𝐾)))
10 eqid 2821 . . . . . 6 (mulGrp‘𝐿) = (mulGrp‘𝐿)
11 eqid 2821 . . . . . 6 (Base‘𝐿) = (Base‘𝐿)
1210, 11mgpbas 19239 . . . . 5 (Base‘𝐿) = (Base‘(mulGrp‘𝐿))
132, 12syl6eq 2872 . . . 4 (𝜑𝐵 = (Base‘(mulGrp‘𝐿)))
14 eqid 2821 . . . . . . 7 (.r𝐾) = (.r𝐾)
156, 14mgpplusg 19237 . . . . . 6 (.r𝐾) = (+g‘(mulGrp‘𝐾))
1615oveqi 7163 . . . . 5 (𝑥(.r𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)
17 eqid 2821 . . . . . . 7 (.r𝐿) = (.r𝐿)
1810, 17mgpplusg 19237 . . . . . 6 (.r𝐿) = (+g‘(mulGrp‘𝐿))
1918oveqi 7163 . . . . 5 (𝑥(.r𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)
204, 16, 193eqtr3g 2879 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
219, 13, 20cmnpropd 18910 . . 3 (𝜑 → ((mulGrp‘𝐾) ∈ CMnd ↔ (mulGrp‘𝐿) ∈ CMnd))
225, 21anbi12d 632 . 2 (𝜑 → ((𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd) ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd)))
236iscrng 19298 . 2 (𝐾 ∈ CRing ↔ (𝐾 ∈ Ring ∧ (mulGrp‘𝐾) ∈ CMnd))
2410iscrng 19298 . 2 (𝐿 ∈ CRing ↔ (𝐿 ∈ Ring ∧ (mulGrp‘𝐿) ∈ CMnd))
2522, 23, 243bitr4g 316 1 (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  cfv 6349  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  .rcmulr 16560  CMndccmn 18900  mulGrpcmgp 19233  Ringcrg 19291  CRingccrg 19292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-cmn 18902  df-mgp 19234  df-ring 19293  df-cring 19294
This theorem is referenced by:  fldpropd  19524  opsrcrng  20262  zncrng  20685
  Copyright terms: Public domain W3C validator