MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crreczi Structured version   Visualization version   GIF version

Theorem crreczi 12929
Description: Reciprocal of a complex number in terms of real and imaginary components. Remark in [Apostol] p. 361. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Jeff Hankins, 16-Dec-2013.)
Hypotheses
Ref Expression
crrecz.1 𝐴 ∈ ℝ
crrecz.2 𝐵 ∈ ℝ
Assertion
Ref Expression
crreczi ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))))

Proof of Theorem crreczi
StepHypRef Expression
1 crrecz.1 . . . . . . . 8 𝐴 ∈ ℝ
21recni 9996 . . . . . . 7 𝐴 ∈ ℂ
32sqcli 12884 . . . . . 6 (𝐴↑2) ∈ ℂ
4 ax-icn 9939 . . . . . . . 8 i ∈ ℂ
5 crrecz.2 . . . . . . . . 9 𝐵 ∈ ℝ
65recni 9996 . . . . . . . 8 𝐵 ∈ ℂ
74, 6mulcli 9989 . . . . . . 7 (i · 𝐵) ∈ ℂ
87sqcli 12884 . . . . . 6 ((i · 𝐵)↑2) ∈ ℂ
93, 8negsubi 10303 . . . . 5 ((𝐴↑2) + -((i · 𝐵)↑2)) = ((𝐴↑2) − ((i · 𝐵)↑2))
104, 6sqmuli 12887 . . . . . . . . 9 ((i · 𝐵)↑2) = ((i↑2) · (𝐵↑2))
11 i2 12905 . . . . . . . . . 10 (i↑2) = -1
1211oveq1i 6614 . . . . . . . . 9 ((i↑2) · (𝐵↑2)) = (-1 · (𝐵↑2))
13 ax-1cn 9938 . . . . . . . . . 10 1 ∈ ℂ
146sqcli 12884 . . . . . . . . . 10 (𝐵↑2) ∈ ℂ
1513, 14mulneg1i 10420 . . . . . . . . 9 (-1 · (𝐵↑2)) = -(1 · (𝐵↑2))
1610, 12, 153eqtri 2647 . . . . . . . 8 ((i · 𝐵)↑2) = -(1 · (𝐵↑2))
1716negeqi 10218 . . . . . . 7 -((i · 𝐵)↑2) = --(1 · (𝐵↑2))
1813, 14mulcli 9989 . . . . . . . 8 (1 · (𝐵↑2)) ∈ ℂ
1918negnegi 10295 . . . . . . 7 --(1 · (𝐵↑2)) = (1 · (𝐵↑2))
2014mulid2i 9987 . . . . . . 7 (1 · (𝐵↑2)) = (𝐵↑2)
2117, 19, 203eqtri 2647 . . . . . 6 -((i · 𝐵)↑2) = (𝐵↑2)
2221oveq2i 6615 . . . . 5 ((𝐴↑2) + -((i · 𝐵)↑2)) = ((𝐴↑2) + (𝐵↑2))
232, 7subsqi 12915 . . . . 5 ((𝐴↑2) − ((i · 𝐵)↑2)) = ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵)))
249, 22, 233eqtr3ri 2652 . . . 4 ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴↑2) + (𝐵↑2))
2524oveq1i 6614 . . 3 (((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) / ((𝐴↑2) + (𝐵↑2))) = (((𝐴↑2) + (𝐵↑2)) / ((𝐴↑2) + (𝐵↑2)))
26 neorian 2884 . . . . 5 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0))
27 sumsqeq0 12882 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0))
281, 5, 27mp2an 707 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0)
2928necon3bbii 2837 . . . . 5 (¬ (𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) ≠ 0)
3026, 29bitri 264 . . . 4 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝐴↑2) + (𝐵↑2)) ≠ 0)
312, 7addcli 9988 . . . . 5 (𝐴 + (i · 𝐵)) ∈ ℂ
322, 7subcli 10301 . . . . 5 (𝐴 − (i · 𝐵)) ∈ ℂ
333, 14addcli 9988 . . . . 5 ((𝐴↑2) + (𝐵↑2)) ∈ ℂ
3431, 32, 33divasszi 10719 . . . 4 (((𝐴↑2) + (𝐵↑2)) ≠ 0 → (((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) / ((𝐴↑2) + (𝐵↑2))) = ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))))
3530, 34sylbi 207 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) / ((𝐴↑2) + (𝐵↑2))) = ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))))
36 divid 10658 . . . . 5 ((((𝐴↑2) + (𝐵↑2)) ∈ ℂ ∧ ((𝐴↑2) + (𝐵↑2)) ≠ 0) → (((𝐴↑2) + (𝐵↑2)) / ((𝐴↑2) + (𝐵↑2))) = 1)
3733, 36mpan 705 . . . 4 (((𝐴↑2) + (𝐵↑2)) ≠ 0 → (((𝐴↑2) + (𝐵↑2)) / ((𝐴↑2) + (𝐵↑2))) = 1)
3830, 37sylbi 207 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (((𝐴↑2) + (𝐵↑2)) / ((𝐴↑2) + (𝐵↑2))) = 1)
3925, 35, 383eqtr3a 2679 . 2 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) = 1)
4032, 33divclzi 10704 . . . 4 (((𝐴↑2) + (𝐵↑2)) ≠ 0 → ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ∈ ℂ)
4130, 40sylbi 207 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ∈ ℂ)
4231a1i 11 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (𝐴 + (i · 𝐵)) ∈ ℂ)
43 crne0 10957 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (𝐴 + (i · 𝐵)) ≠ 0))
441, 5, 43mp2an 707 . . . 4 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (𝐴 + (i · 𝐵)) ≠ 0)
4544biimpi 206 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (𝐴 + (i · 𝐵)) ≠ 0)
46 divmul 10632 . . . 4 ((1 ∈ ℂ ∧ ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ∈ ℂ ∧ ((𝐴 + (i · 𝐵)) ∈ ℂ ∧ (𝐴 + (i · 𝐵)) ≠ 0)) → ((1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ↔ ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) = 1))
4713, 46mp3an1 1408 . . 3 ((((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ∈ ℂ ∧ ((𝐴 + (i · 𝐵)) ∈ ℂ ∧ (𝐴 + (i · 𝐵)) ≠ 0)) → ((1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ↔ ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) = 1))
4841, 42, 45, 47syl12anc 1321 . 2 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → ((1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ↔ ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) = 1))
4939, 48mpbird 247 1 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881  ici 9882   + caddc 9883   · cmul 9885  cmin 10210  -cneg 10211   / cdiv 10628  2c2 11014  cexp 12800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-seq 12742  df-exp 12801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator