Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  crth Structured version   Visualization version   GIF version

Theorem crth 15407
 Description: The Chinese Remainder Theorem: the function that maps 𝑥 to its remainder classes mod 𝑀 and mod 𝑁 is 1-1 and onto when 𝑀 and 𝑁 are coprime. (Contributed by Mario Carneiro, 24-Feb-2014.) (Proof shortened by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
crth.1 𝑆 = (0..^(𝑀 · 𝑁))
crth.2 𝑇 = ((0..^𝑀) × (0..^𝑁))
crth.3 𝐹 = (𝑥𝑆 ↦ ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩)
crth.4 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1))
Assertion
Ref Expression
crth (𝜑𝐹:𝑆1-1-onto𝑇)
Distinct variable groups:   𝑥,𝑀   𝜑,𝑥   𝑥,𝑆   𝑥,𝑇   𝑥,𝑁
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem crth
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoelz 12411 . . . . . 6 (𝑥 ∈ (0..^(𝑀 · 𝑁)) → 𝑥 ∈ ℤ)
2 crth.1 . . . . . 6 𝑆 = (0..^(𝑀 · 𝑁))
31, 2eleq2s 2716 . . . . 5 (𝑥𝑆𝑥 ∈ ℤ)
4 simpr 477 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
5 crth.4 . . . . . . . . . 10 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1))
65simp1d 1071 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
76adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → 𝑀 ∈ ℕ)
8 zmodfzo 12633 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑥 mod 𝑀) ∈ (0..^𝑀))
94, 7, 8syl2anc 692 . . . . . . 7 ((𝜑𝑥 ∈ ℤ) → (𝑥 mod 𝑀) ∈ (0..^𝑀))
105simp2d 1072 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
1110adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → 𝑁 ∈ ℕ)
12 zmodfzo 12633 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑥 mod 𝑁) ∈ (0..^𝑁))
134, 11, 12syl2anc 692 . . . . . . 7 ((𝜑𝑥 ∈ ℤ) → (𝑥 mod 𝑁) ∈ (0..^𝑁))
14 opelxpi 5108 . . . . . . 7 (((𝑥 mod 𝑀) ∈ (0..^𝑀) ∧ (𝑥 mod 𝑁) ∈ (0..^𝑁)) → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ ∈ ((0..^𝑀) × (0..^𝑁)))
159, 13, 14syl2anc 692 . . . . . 6 ((𝜑𝑥 ∈ ℤ) → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ ∈ ((0..^𝑀) × (0..^𝑁)))
16 crth.2 . . . . . 6 𝑇 = ((0..^𝑀) × (0..^𝑁))
1715, 16syl6eleqr 2709 . . . . 5 ((𝜑𝑥 ∈ ℤ) → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ ∈ 𝑇)
183, 17sylan2 491 . . . 4 ((𝜑𝑥𝑆) → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ ∈ 𝑇)
19 crth.3 . . . 4 𝐹 = (𝑥𝑆 ↦ ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩)
2018, 19fmptd 6340 . . 3 (𝜑𝐹:𝑆𝑇)
21 oveq1 6611 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 mod 𝑀) = (𝑦 mod 𝑀))
22 oveq1 6611 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 mod 𝑁) = (𝑦 mod 𝑁))
2321, 22opeq12d 4378 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ = ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩)
24 opex 4893 . . . . . . . . 9 ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩ ∈ V
2523, 19, 24fvmpt 6239 . . . . . . . 8 (𝑦𝑆 → (𝐹𝑦) = ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩)
2625ad2antrl 763 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝐹𝑦) = ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩)
27 oveq1 6611 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 mod 𝑀) = (𝑧 mod 𝑀))
28 oveq1 6611 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 mod 𝑁) = (𝑧 mod 𝑁))
2927, 28opeq12d 4378 . . . . . . . . 9 (𝑥 = 𝑧 → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩)
30 opex 4893 . . . . . . . . 9 ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩ ∈ V
3129, 19, 30fvmpt 6239 . . . . . . . 8 (𝑧𝑆 → (𝐹𝑧) = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩)
3231ad2antll 764 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝐹𝑧) = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩)
3326, 32eqeq12d 2636 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝐹𝑦) = (𝐹𝑧) ↔ ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩ = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩))
34 ovex 6632 . . . . . . 7 (𝑦 mod 𝑀) ∈ V
35 ovex 6632 . . . . . . 7 (𝑦 mod 𝑁) ∈ V
3634, 35opth 4905 . . . . . 6 (⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩ = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩ ↔ ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁)))
3733, 36syl6bb 276 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝐹𝑦) = (𝐹𝑧) ↔ ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁))))
386adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑀 ∈ ℕ)
3938nnzd 11425 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑀 ∈ ℤ)
4010adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑁 ∈ ℕ)
4140nnzd 11425 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑁 ∈ ℤ)
42 simprl 793 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦𝑆)
4342, 2syl6eleq 2708 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦 ∈ (0..^(𝑀 · 𝑁)))
44 elfzoelz 12411 . . . . . . . . 9 (𝑦 ∈ (0..^(𝑀 · 𝑁)) → 𝑦 ∈ ℤ)
4543, 44syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦 ∈ ℤ)
46 simprr 795 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧𝑆)
4746, 2syl6eleq 2708 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧 ∈ (0..^(𝑀 · 𝑁)))
48 elfzoelz 12411 . . . . . . . . 9 (𝑧 ∈ (0..^(𝑀 · 𝑁)) → 𝑧 ∈ ℤ)
4947, 48syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧 ∈ ℤ)
5045, 49zsubcld 11431 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑦𝑧) ∈ ℤ)
515simp3d 1073 . . . . . . . 8 (𝜑 → (𝑀 gcd 𝑁) = 1)
5251adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑀 gcd 𝑁) = 1)
53 coprmdvds2 15292 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑦𝑧) ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 ∥ (𝑦𝑧) ∧ 𝑁 ∥ (𝑦𝑧)) → (𝑀 · 𝑁) ∥ (𝑦𝑧)))
5439, 41, 50, 52, 53syl31anc 1326 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝑀 ∥ (𝑦𝑧) ∧ 𝑁 ∥ (𝑦𝑧)) → (𝑀 · 𝑁) ∥ (𝑦𝑧)))
55 moddvds 14915 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ↔ 𝑀 ∥ (𝑦𝑧)))
5638, 45, 49, 55syl3anc 1323 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ↔ 𝑀 ∥ (𝑦𝑧)))
57 moddvds 14915 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦 mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ (𝑦𝑧)))
5840, 45, 49, 57syl3anc 1323 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦 mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ (𝑦𝑧)))
5956, 58anbi12d 746 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁)) ↔ (𝑀 ∥ (𝑦𝑧) ∧ 𝑁 ∥ (𝑦𝑧))))
6045zred 11426 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦 ∈ ℝ)
6138, 40nnmulcld 11012 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑀 · 𝑁) ∈ ℕ)
6261nnrpd 11814 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑀 · 𝑁) ∈ ℝ+)
63 elfzole1 12419 . . . . . . . . . 10 (𝑦 ∈ (0..^(𝑀 · 𝑁)) → 0 ≤ 𝑦)
6443, 63syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 0 ≤ 𝑦)
65 elfzolt2 12420 . . . . . . . . . 10 (𝑦 ∈ (0..^(𝑀 · 𝑁)) → 𝑦 < (𝑀 · 𝑁))
6643, 65syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦 < (𝑀 · 𝑁))
67 modid 12635 . . . . . . . . 9 (((𝑦 ∈ ℝ ∧ (𝑀 · 𝑁) ∈ ℝ+) ∧ (0 ≤ 𝑦𝑦 < (𝑀 · 𝑁))) → (𝑦 mod (𝑀 · 𝑁)) = 𝑦)
6860, 62, 64, 66, 67syl22anc 1324 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑦 mod (𝑀 · 𝑁)) = 𝑦)
6949zred 11426 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧 ∈ ℝ)
70 elfzole1 12419 . . . . . . . . . 10 (𝑧 ∈ (0..^(𝑀 · 𝑁)) → 0 ≤ 𝑧)
7147, 70syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 0 ≤ 𝑧)
72 elfzolt2 12420 . . . . . . . . . 10 (𝑧 ∈ (0..^(𝑀 · 𝑁)) → 𝑧 < (𝑀 · 𝑁))
7347, 72syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧 < (𝑀 · 𝑁))
74 modid 12635 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ (𝑀 · 𝑁) ∈ ℝ+) ∧ (0 ≤ 𝑧𝑧 < (𝑀 · 𝑁))) → (𝑧 mod (𝑀 · 𝑁)) = 𝑧)
7569, 62, 71, 73, 74syl22anc 1324 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑧 mod (𝑀 · 𝑁)) = 𝑧)
7668, 75eqeq12d 2636 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦 mod (𝑀 · 𝑁)) = (𝑧 mod (𝑀 · 𝑁)) ↔ 𝑦 = 𝑧))
77 moddvds 14915 . . . . . . . 8 (((𝑀 · 𝑁) ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦 mod (𝑀 · 𝑁)) = (𝑧 mod (𝑀 · 𝑁)) ↔ (𝑀 · 𝑁) ∥ (𝑦𝑧)))
7861, 45, 49, 77syl3anc 1323 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦 mod (𝑀 · 𝑁)) = (𝑧 mod (𝑀 · 𝑁)) ↔ (𝑀 · 𝑁) ∥ (𝑦𝑧)))
7976, 78bitr3d 270 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑦 = 𝑧 ↔ (𝑀 · 𝑁) ∥ (𝑦𝑧)))
8054, 59, 793imtr4d 283 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁)) → 𝑦 = 𝑧))
8137, 80sylbid 230 . . . 4 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
8281ralrimivva 2965 . . 3 (𝜑 → ∀𝑦𝑆𝑧𝑆 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
83 dff13 6466 . . 3 (𝐹:𝑆1-1𝑇 ↔ (𝐹:𝑆𝑇 ∧ ∀𝑦𝑆𝑧𝑆 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
8420, 82, 83sylanbrc 697 . 2 (𝜑𝐹:𝑆1-1𝑇)
85 nnnn0 11243 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
86 nnnn0 11243 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
87 nn0mulcl 11273 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0)
88 hashfzo0 13157 . . . . . . . . 9 ((𝑀 · 𝑁) ∈ ℕ0 → (#‘(0..^(𝑀 · 𝑁))) = (𝑀 · 𝑁))
8987, 88syl 17 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (#‘(0..^(𝑀 · 𝑁))) = (𝑀 · 𝑁))
90 fzofi 12713 . . . . . . . . . 10 (0..^𝑀) ∈ Fin
91 fzofi 12713 . . . . . . . . . 10 (0..^𝑁) ∈ Fin
92 hashxp 13161 . . . . . . . . . 10 (((0..^𝑀) ∈ Fin ∧ (0..^𝑁) ∈ Fin) → (#‘((0..^𝑀) × (0..^𝑁))) = ((#‘(0..^𝑀)) · (#‘(0..^𝑁))))
9390, 91, 92mp2an 707 . . . . . . . . 9 (#‘((0..^𝑀) × (0..^𝑁))) = ((#‘(0..^𝑀)) · (#‘(0..^𝑁)))
94 hashfzo0 13157 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (#‘(0..^𝑀)) = 𝑀)
95 hashfzo0 13157 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (#‘(0..^𝑁)) = 𝑁)
9694, 95oveqan12d 6623 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((#‘(0..^𝑀)) · (#‘(0..^𝑁))) = (𝑀 · 𝑁))
9793, 96syl5eq 2667 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (#‘((0..^𝑀) × (0..^𝑁))) = (𝑀 · 𝑁))
9889, 97eqtr4d 2658 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (#‘(0..^(𝑀 · 𝑁))) = (#‘((0..^𝑀) × (0..^𝑁))))
99 fzofi 12713 . . . . . . . 8 (0..^(𝑀 · 𝑁)) ∈ Fin
100 xpfi 8175 . . . . . . . . 9 (((0..^𝑀) ∈ Fin ∧ (0..^𝑁) ∈ Fin) → ((0..^𝑀) × (0..^𝑁)) ∈ Fin)
10190, 91, 100mp2an 707 . . . . . . . 8 ((0..^𝑀) × (0..^𝑁)) ∈ Fin
102 hashen 13075 . . . . . . . 8 (((0..^(𝑀 · 𝑁)) ∈ Fin ∧ ((0..^𝑀) × (0..^𝑁)) ∈ Fin) → ((#‘(0..^(𝑀 · 𝑁))) = (#‘((0..^𝑀) × (0..^𝑁))) ↔ (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁))))
10399, 101, 102mp2an 707 . . . . . . 7 ((#‘(0..^(𝑀 · 𝑁))) = (#‘((0..^𝑀) × (0..^𝑁))) ↔ (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁)))
10498, 103sylib 208 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁)))
10585, 86, 104syl2an 494 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁)))
1066, 10, 105syl2anc 692 . . . 4 (𝜑 → (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁)))
107106, 2, 163brtr4g 4647 . . 3 (𝜑𝑆𝑇)
10816, 101eqeltri 2694 . . 3 𝑇 ∈ Fin
109 f1finf1o 8131 . . 3 ((𝑆𝑇𝑇 ∈ Fin) → (𝐹:𝑆1-1𝑇𝐹:𝑆1-1-onto𝑇))
110107, 108, 109sylancl 693 . 2 (𝜑 → (𝐹:𝑆1-1𝑇𝐹:𝑆1-1-onto𝑇))
11184, 110mpbid 222 1 (𝜑𝐹:𝑆1-1-onto𝑇)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2907  ⟨cop 4154   class class class wbr 4613   ↦ cmpt 4673   × cxp 5072  ⟶wf 5843  –1-1→wf1 5844  –1-1-onto→wf1o 5846  ‘cfv 5847  (class class class)co 6604   ≈ cen 7896  Fincfn 7899  ℝcr 9879  0cc0 9880  1c1 9881   · cmul 9885   < clt 10018   ≤ cle 10019   − cmin 10210  ℕcn 10964  ℕ0cn0 11236  ℤcz 11321  ℝ+crp 11776  ..^cfzo 12406   mod cmo 12608  #chash 13057   ∥ cdvds 14907   gcd cgcd 15140 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-dvds 14908  df-gcd 15141 This theorem is referenced by:  phimullem  15408
 Copyright terms: Public domain W3C validator