Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbdif Structured version   Visualization version   GIF version

Theorem csbdif 34600
Description: Distribution of class substitution over difference of two classes. (Contributed by ML, 14-Jul-2020.)
Assertion
Ref Expression
csbdif 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)

Proof of Theorem csbdif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3886 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵𝐶))
2 csbeq1 3886 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
3 csbeq1 3886 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
42, 3difeq12d 4100 . . . 4 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
51, 4eqeq12d 2837 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶) ↔ 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)))
6 vex 3498 . . . 4 𝑦 ∈ V
7 nfcsb1v 3907 . . . . 5 𝑥𝑦 / 𝑥𝐵
8 nfcsb1v 3907 . . . . 5 𝑥𝑦 / 𝑥𝐶
97, 8nfdif 4102 . . . 4 𝑥(𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
10 csbeq1a 3897 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
11 csbeq1a 3897 . . . . 5 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1210, 11difeq12d 4100 . . . 4 (𝑥 = 𝑦 → (𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶))
136, 9, 12csbief 3917 . . 3 𝑦 / 𝑥(𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
145, 13vtoclg 3568 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
15 dif0 4332 . . . 4 (∅ ∖ ∅) = ∅
1615a1i 11 . . 3 𝐴 ∈ V → (∅ ∖ ∅) = ∅)
17 csbprc 4358 . . . 4 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
18 csbprc 4358 . . . 4 𝐴 ∈ V → 𝐴 / 𝑥𝐶 = ∅)
1917, 18difeq12d 4100 . . 3 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = (∅ ∖ ∅))
20 csbprc 4358 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐶) = ∅)
2116, 19, 203eqtr4rd 2867 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
2214, 21pm2.61i 184 1 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wcel 2110  Vcvv 3495  csb 3883  cdif 3933  c0 4291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-in 3943  df-ss 3952  df-nul 4292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator