Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbfinxpg Structured version   Visualization version   GIF version

Theorem csbfinxpg 34551
Description: Distribute proper substitution through Cartesian exponentiation. (Contributed by ML, 25-Oct-2020.)
Assertion
Ref Expression
csbfinxpg (𝐴𝑉𝐴 / 𝑥(𝑈↑↑𝑁) = (𝐴 / 𝑥𝑈↑↑𝐴 / 𝑥𝑁))
Distinct variable group:   𝑥,𝑁
Allowed substitution hints:   𝐴(𝑥)   𝑈(𝑥)   𝑉(𝑥)

Proof of Theorem csbfinxpg
Dummy variables 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-finxp 34547 . . 3 (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}
21csbeq2i 3888 . 2 𝐴 / 𝑥(𝑈↑↑𝑁) = 𝐴 / 𝑥{𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}
3 sbcan 3818 . . . . 5 ([𝐴 / 𝑥](𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)) ↔ ([𝐴 / 𝑥]𝑁 ∈ ω ∧ [𝐴 / 𝑥]∅ = (rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)))
4 sbcel1g 4362 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝑁 ∈ ω ↔ 𝐴 / 𝑥𝑁 ∈ ω))
5 sbceq2g 4365 . . . . . . 7 (𝐴𝑉 → ([𝐴 / 𝑥]∅ = (rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝑁, 𝑦⟩)‘𝑁) ↔ ∅ = 𝐴 / 𝑥(rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)))
6 csbfv12 6706 . . . . . . . . 9 𝐴 / 𝑥(rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝑁, 𝑦⟩)‘𝑁) = (𝐴 / 𝑥rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝑁, 𝑦⟩)‘𝐴 / 𝑥𝑁)
7 csbrdgg 34492 . . . . . . . . . . 11 (𝐴𝑉𝐴 / 𝑥rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝑁, 𝑦⟩) = rec(𝐴 / 𝑥(𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), 𝐴 / 𝑥𝑁, 𝑦⟩))
8 csbmpo123 34494 . . . . . . . . . . . . 13 (𝐴𝑉𝐴 / 𝑥(𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))) = (𝑛𝐴 / 𝑥ω, 𝑧𝐴 / 𝑥V ↦ 𝐴 / 𝑥if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))))
9 csbconstg 3899 . . . . . . . . . . . . . 14 (𝐴𝑉𝐴 / 𝑥ω = ω)
10 csbconstg 3899 . . . . . . . . . . . . . 14 (𝐴𝑉𝐴 / 𝑥V = V)
11 csbif 4518 . . . . . . . . . . . . . . 15 𝐴 / 𝑥if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩)) = if([𝐴 / 𝑥](𝑛 = 1o𝑧𝑈), 𝐴 / 𝑥∅, 𝐴 / 𝑥if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))
12 sbcan 3818 . . . . . . . . . . . . . . . . 17 ([𝐴 / 𝑥](𝑛 = 1o𝑧𝑈) ↔ ([𝐴 / 𝑥]𝑛 = 1o[𝐴 / 𝑥]𝑧𝑈))
13 sbcg 3844 . . . . . . . . . . . . . . . . . 18 (𝐴𝑉 → ([𝐴 / 𝑥]𝑛 = 1o𝑛 = 1o))
14 sbcel12 4357 . . . . . . . . . . . . . . . . . . 19 ([𝐴 / 𝑥]𝑧𝑈𝐴 / 𝑥𝑧𝐴 / 𝑥𝑈)
15 csbconstg 3899 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝑉𝐴 / 𝑥𝑧 = 𝑧)
1615eleq1d 2894 . . . . . . . . . . . . . . . . . . 19 (𝐴𝑉 → (𝐴 / 𝑥𝑧𝐴 / 𝑥𝑈𝑧𝐴 / 𝑥𝑈))
1714, 16syl5bb 284 . . . . . . . . . . . . . . . . . 18 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧𝑈𝑧𝐴 / 𝑥𝑈))
1813, 17anbi12d 630 . . . . . . . . . . . . . . . . 17 (𝐴𝑉 → (([𝐴 / 𝑥]𝑛 = 1o[𝐴 / 𝑥]𝑧𝑈) ↔ (𝑛 = 1o𝑧𝐴 / 𝑥𝑈)))
1912, 18syl5bb 284 . . . . . . . . . . . . . . . 16 (𝐴𝑉 → ([𝐴 / 𝑥](𝑛 = 1o𝑧𝑈) ↔ (𝑛 = 1o𝑧𝐴 / 𝑥𝑈)))
20 csbconstg 3899 . . . . . . . . . . . . . . . 16 (𝐴𝑉𝐴 / 𝑥∅ = ∅)
21 csbif 4518 . . . . . . . . . . . . . . . . 17 𝐴 / 𝑥if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩) = if([𝐴 / 𝑥]𝑧 ∈ (V × 𝑈), 𝐴 / 𝑥 𝑛, (1st𝑧)⟩, 𝐴 / 𝑥𝑛, 𝑧⟩)
22 sbcel12 4357 . . . . . . . . . . . . . . . . . . 19 ([𝐴 / 𝑥]𝑧 ∈ (V × 𝑈) ↔ 𝐴 / 𝑥𝑧𝐴 / 𝑥(V × 𝑈))
23 csbxp 5643 . . . . . . . . . . . . . . . . . . . . 21 𝐴 / 𝑥(V × 𝑈) = (𝐴 / 𝑥V × 𝐴 / 𝑥𝑈)
2410xpeq1d 5577 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝑉 → (𝐴 / 𝑥V × 𝐴 / 𝑥𝑈) = (V × 𝐴 / 𝑥𝑈))
2523, 24syl5eq 2865 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝑉𝐴 / 𝑥(V × 𝑈) = (V × 𝐴 / 𝑥𝑈))
2615, 25eleq12d 2904 . . . . . . . . . . . . . . . . . . 19 (𝐴𝑉 → (𝐴 / 𝑥𝑧𝐴 / 𝑥(V × 𝑈) ↔ 𝑧 ∈ (V × 𝐴 / 𝑥𝑈)))
2722, 26syl5bb 284 . . . . . . . . . . . . . . . . . 18 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧 ∈ (V × 𝑈) ↔ 𝑧 ∈ (V × 𝐴 / 𝑥𝑈)))
28 csbconstg 3899 . . . . . . . . . . . . . . . . . 18 (𝐴𝑉𝐴 / 𝑥 𝑛, (1st𝑧)⟩ = ⟨ 𝑛, (1st𝑧)⟩)
29 csbconstg 3899 . . . . . . . . . . . . . . . . . 18 (𝐴𝑉𝐴 / 𝑥𝑛, 𝑧⟩ = ⟨𝑛, 𝑧⟩)
3027, 28, 29ifbieq12d 4490 . . . . . . . . . . . . . . . . 17 (𝐴𝑉 → if([𝐴 / 𝑥]𝑧 ∈ (V × 𝑈), 𝐴 / 𝑥 𝑛, (1st𝑧)⟩, 𝐴 / 𝑥𝑛, 𝑧⟩) = if(𝑧 ∈ (V × 𝐴 / 𝑥𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))
3121, 30syl5eq 2865 . . . . . . . . . . . . . . . 16 (𝐴𝑉𝐴 / 𝑥if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩) = if(𝑧 ∈ (V × 𝐴 / 𝑥𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))
3219, 20, 31ifbieq12d 4490 . . . . . . . . . . . . . . 15 (𝐴𝑉 → if([𝐴 / 𝑥](𝑛 = 1o𝑧𝑈), 𝐴 / 𝑥∅, 𝐴 / 𝑥if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩)) = if((𝑛 = 1o𝑧𝐴 / 𝑥𝑈), ∅, if(𝑧 ∈ (V × 𝐴 / 𝑥𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩)))
3311, 32syl5eq 2865 . . . . . . . . . . . . . 14 (𝐴𝑉𝐴 / 𝑥if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩)) = if((𝑛 = 1o𝑧𝐴 / 𝑥𝑈), ∅, if(𝑧 ∈ (V × 𝐴 / 𝑥𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩)))
349, 10, 33mpoeq123dv 7218 . . . . . . . . . . . . 13 (𝐴𝑉 → (𝑛𝐴 / 𝑥ω, 𝑧𝐴 / 𝑥V ↦ 𝐴 / 𝑥if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))) = (𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝐴 / 𝑥𝑈), ∅, if(𝑧 ∈ (V × 𝐴 / 𝑥𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))))
358, 34eqtrd 2853 . . . . . . . . . . . 12 (𝐴𝑉𝐴 / 𝑥(𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))) = (𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝐴 / 𝑥𝑈), ∅, if(𝑧 ∈ (V × 𝐴 / 𝑥𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))))
36 csbopg 4813 . . . . . . . . . . . . 13 (𝐴𝑉𝐴 / 𝑥𝑁, 𝑦⟩ = ⟨𝐴 / 𝑥𝑁, 𝐴 / 𝑥𝑦⟩)
37 csbconstg 3899 . . . . . . . . . . . . . 14 (𝐴𝑉𝐴 / 𝑥𝑦 = 𝑦)
3837opeq2d 4802 . . . . . . . . . . . . 13 (𝐴𝑉 → ⟨𝐴 / 𝑥𝑁, 𝐴 / 𝑥𝑦⟩ = ⟨𝐴 / 𝑥𝑁, 𝑦⟩)
3936, 38eqtrd 2853 . . . . . . . . . . . 12 (𝐴𝑉𝐴 / 𝑥𝑁, 𝑦⟩ = ⟨𝐴 / 𝑥𝑁, 𝑦⟩)
40 rdgeq12 8038 . . . . . . . . . . . 12 ((𝐴 / 𝑥(𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))) = (𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝐴 / 𝑥𝑈), ∅, if(𝑧 ∈ (V × 𝐴 / 𝑥𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))) ∧ 𝐴 / 𝑥𝑁, 𝑦⟩ = ⟨𝐴 / 𝑥𝑁, 𝑦⟩) → rec(𝐴 / 𝑥(𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), 𝐴 / 𝑥𝑁, 𝑦⟩) = rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝐴 / 𝑥𝑈), ∅, if(𝑧 ∈ (V × 𝐴 / 𝑥𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝐴 / 𝑥𝑁, 𝑦⟩))
4135, 39, 40syl2anc 584 . . . . . . . . . . 11 (𝐴𝑉 → rec(𝐴 / 𝑥(𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), 𝐴 / 𝑥𝑁, 𝑦⟩) = rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝐴 / 𝑥𝑈), ∅, if(𝑧 ∈ (V × 𝐴 / 𝑥𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝐴 / 𝑥𝑁, 𝑦⟩))
427, 41eqtrd 2853 . . . . . . . . . 10 (𝐴𝑉𝐴 / 𝑥rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝑁, 𝑦⟩) = rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝐴 / 𝑥𝑈), ∅, if(𝑧 ∈ (V × 𝐴 / 𝑥𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝐴 / 𝑥𝑁, 𝑦⟩))
4342fveq1d 6665 . . . . . . . . 9 (𝐴𝑉 → (𝐴 / 𝑥rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝑁, 𝑦⟩)‘𝐴 / 𝑥𝑁) = (rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝐴 / 𝑥𝑈), ∅, if(𝑧 ∈ (V × 𝐴 / 𝑥𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝐴 / 𝑥𝑁, 𝑦⟩)‘𝐴 / 𝑥𝑁))
446, 43syl5eq 2865 . . . . . . . 8 (𝐴𝑉𝐴 / 𝑥(rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝑁, 𝑦⟩)‘𝑁) = (rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝐴 / 𝑥𝑈), ∅, if(𝑧 ∈ (V × 𝐴 / 𝑥𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝐴 / 𝑥𝑁, 𝑦⟩)‘𝐴 / 𝑥𝑁))
4544eqeq2d 2829 . . . . . . 7 (𝐴𝑉 → (∅ = 𝐴 / 𝑥(rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝑁, 𝑦⟩)‘𝑁) ↔ ∅ = (rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝐴 / 𝑥𝑈), ∅, if(𝑧 ∈ (V × 𝐴 / 𝑥𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝐴 / 𝑥𝑁, 𝑦⟩)‘𝐴 / 𝑥𝑁)))
465, 45bitrd 280 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]∅ = (rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝑁, 𝑦⟩)‘𝑁) ↔ ∅ = (rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝐴 / 𝑥𝑈), ∅, if(𝑧 ∈ (V × 𝐴 / 𝑥𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝐴 / 𝑥𝑁, 𝑦⟩)‘𝐴 / 𝑥𝑁)))
474, 46anbi12d 630 . . . . 5 (𝐴𝑉 → (([𝐴 / 𝑥]𝑁 ∈ ω ∧ [𝐴 / 𝑥]∅ = (rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)) ↔ (𝐴 / 𝑥𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝐴 / 𝑥𝑈), ∅, if(𝑧 ∈ (V × 𝐴 / 𝑥𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝐴 / 𝑥𝑁, 𝑦⟩)‘𝐴 / 𝑥𝑁))))
483, 47syl5bb 284 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥](𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)) ↔ (𝐴 / 𝑥𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝐴 / 𝑥𝑈), ∅, if(𝑧 ∈ (V × 𝐴 / 𝑥𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝐴 / 𝑥𝑁, 𝑦⟩)‘𝐴 / 𝑥𝑁))))
4948abbidv 2882 . . 3 (𝐴𝑉 → {𝑦[𝐴 / 𝑥](𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))} = {𝑦 ∣ (𝐴 / 𝑥𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝐴 / 𝑥𝑈), ∅, if(𝑧 ∈ (V × 𝐴 / 𝑥𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝐴 / 𝑥𝑁, 𝑦⟩)‘𝐴 / 𝑥𝑁))})
50 csbab 4386 . . 3 𝐴 / 𝑥{𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))} = {𝑦[𝐴 / 𝑥](𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}
51 df-finxp 34547 . . 3 (𝐴 / 𝑥𝑈↑↑𝐴 / 𝑥𝑁) = {𝑦 ∣ (𝐴 / 𝑥𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝐴 / 𝑥𝑈), ∅, if(𝑧 ∈ (V × 𝐴 / 𝑥𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝐴 / 𝑥𝑁, 𝑦⟩)‘𝐴 / 𝑥𝑁))}
5249, 50, 513eqtr4g 2878 . 2 (𝐴𝑉𝐴 / 𝑥{𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑧 ∈ V ↦ if((𝑛 = 1o𝑧𝑈), ∅, if(𝑧 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑧)⟩, ⟨𝑛, 𝑧⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))} = (𝐴 / 𝑥𝑈↑↑𝐴 / 𝑥𝑁))
532, 52syl5eq 2865 1 (𝐴𝑉𝐴 / 𝑥(𝑈↑↑𝑁) = (𝐴 / 𝑥𝑈↑↑𝐴 / 𝑥𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  {cab 2796  Vcvv 3492  [wsbc 3769  csb 3880  c0 4288  ifcif 4463  cop 4563   cuni 4830   × cxp 5546  cfv 6348  cmpo 7147  ωcom 7569  1st c1st 7676  reccrdg 8034  1oc1o 8084  ↑↑cfinxp 34546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-xp 5554  df-cnv 5556  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-iota 6307  df-fv 6356  df-oprab 7149  df-mpo 7150  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-finxp 34547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator